

Programming
Guideline for
S7-1200/1500

TIA Portal

https://support.industry.siemens.com/cs/ww/en/view/81318674

Siemens
Industry
Online
Support

https://support.industry.siemens.com/cs/ww/en/view/81318674

Legal information

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 2


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Legal information
Use of application examples

Application examples illustrate the solution of automation tasks through an interaction of several
components in the form of text, graphics and/or software modules. The application examples are
a free service by Siemens AG and/or a subsidiary of Siemens AG (“Siemens”). They are non-
binding and make no claim to completeness or functionality regarding configuration and
equipment. The application examples merely offer help with typical tasks; they do not constitute
customer-specific solutions. You yourself are responsible for the proper and safe operation of the
products in accordance with applicable regulations and must also check the function of the
respective application example and customize it for your system.
Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the
application examples used by technically trained personnel. Any change to the application
examples is your responsibility. Sharing the application examples with third parties or copying the
application examples or excerpts thereof is permitted only in combination with your own products.
The application examples are not required to undergo the customary tests and quality inspections
of a chargeable product; they may have functional and performance defects as well as errors. It is
your responsibility to use them in such a manner that any malfunctions that may occur do not
result in property damage or injury to persons.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without
limitation, liability for the usability, availability, completeness and freedom from defects of the
application examples as well as for related information, configuration and performance data and
any damage caused thereby. This shall not apply in cases of mandatory liability, for example
under the German Product Liability Act, or in cases of intent, gross negligence, or culpable loss of
life, bodily injury or damage to health, non-compliance with a guarantee, fraudulent
non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for
damages arising from a breach of material contractual obligations shall however be limited to the
foreseeable damage typical of the type of agreement, unless liability arises from intent or gross
negligence or is based on loss of life, bodily injury or damage to health. The foregoing provisions
do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens
against existing or future claims of third parties in this connection except where Siemens is
mandatorily liable.
By using the application examples you acknowledge that Siemens cannot be held liable for any
damage beyond the liability provisions described.

Other information
Siemens reserves the right to make changes to the application examples at any time without
notice. In case of discrepancies between the suggestions in the application examples and other
Siemens publications such as catalogs, the content of the other documentation shall have
precedence.
The Siemens terms of use (https://support.industry.siemens.com) shall also apply.

Security information
Siemens provides products and solutions with industrial security functions that support the secure
operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is necessary
to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept.
Siemens’ products and solutions constitute one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems, machines
and networks. Such systems, machines and components should only be connected to an
enterprise network or the Internet if and to the extent such a connection is necessary and only
when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.
For additional information on industrial security measures that may be implemented, please visit
https://www.siemens.com/industrialsecurity.
Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
at: https://www.siemens.com/industrialsecurity.

https://support.industry.siemens.com/
https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity

Table of Contents

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 3


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of Contents
Legal information ... 2

1 Preface .. 6

2 S7-1200/S7-1500 innovations ... 8

2.1 Introduction ... 8
2.2 Terms ... 8
2.3 Programming languages .. 11
2.4 Optimized machine code .. 11
2.5 Block creation ... 12
2.6 Optimized blocks .. 13
2.6.1 S7-1200: Structure of optimized blocks ... 13
2.6.2 S7-1500: Structure of optimized blocks ... 14
2.6.3 Processor-optimized data storage for S7-1500 15
2.6.4 Conversion between optimized and non-optimized tags 18
2.6.5 Parameter transfer between blocks with optimized and non-

optimized access .. 19
2.6.6 Communication with optimized data .. 20
2.7 Block properties .. 21
2.7.1 Block sizes ... 21
2.7.2 Number of organization blocks (OB) .. 21
2.7.3 Block interface – hide block parameters (V14 or higher) 22
2.8 New data types for S7-1200/1500 .. 23
2.8.1 Elementary data types .. 23
2.8.2 Data type Date_Time_Long ... 24
2.8.3 Other time data types ... 24
2.8.4 Unicode data types ... 25
2.8.5 Data type VARIANT (S7-1500 and S7-1200 from FW4.1) 26
2.9 Instructions ... 29
2.9.1 MOVE instructions .. 29
2.9.2 VARIANT instructions (S7-1500 and S7-1200 FW4.1 and

higher) .. 31
2.9.3 RUNTIME ... 32
2.9.4 Comparison of tags from PLC data types (V14 or higher) 33
2.9.5 Multiple assignment (V14 or higher) .. 34
2.10 Symbolic and comments .. 35
2.10.1 Programming editor .. 35
2.10.2 Comment lines in watch tables .. 36
2.11 System constants ... 37
2.12 User constants ... 38
2.13 Internal reference ID for controller and HMI tags 39
2.14 STOP mode in the event of errors ... 41

3 General programming ... 42

3.1 Operating system and user program .. 42
3.2 Program blocks .. 42
3.2.1 Organization blocks (OB) ... 43
3.2.2 Functions (FC) .. 45
3.2.3 Function blocks (FB) .. 47
3.2.4 Instances .. 48
3.2.5 Multi-instances ... 49
3.2.6 Transferring instance as parameters (V14).. 51
3.2.7 Global data blocks (DB) ... 52
3.2.8 Downloading without reinitialisation ... 53
3.2.9 Reusability of blocks ... 57
3.2.10 Auto numbering of blocks ... 58

Table of Contents

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 4


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3 Block interface types .. 59
3.3.1 Call-by-value .. 59
3.3.2 Call-by-reference .. 59
3.3.3 Overview for transfer of parameters ... 60
3.4 Memory concept ... 60
3.4.1 Block interfaces as data exchange .. 60
3.4.2 Global memory ... 61
3.4.3 Local memory ... 62
3.4.4 Access speed of memory areas ... 63
3.5 Retentivity ... 64
3.6 Symbolic addressing .. 67
3.6.1 Symbolic instead of absolute addressing ... 67
3.6.2 ARRAY data type and indirect field accesses 69
3.6.3 Formal parameter Array [*] (V14 or higher).. 71
3.6.4 STRUCT data type and PLC data types .. 72
3.6.5 Access to I/O areas with PLC data types ... 75
3.6.6 Slice access ... 76
3.6.7 SCL networks in LAD and FBD (V14 and higher) 77
3.7 Libraries .. 78
3.7.1 Types of libraries and library elements .. 79
3.7.2 Type concept .. 80
3.7.3 Differences between the typifiable objects for CPU and HMI 81
3.7.4 Versioning of a block .. 81
3.8 Increased performance for hardware interrupts 86
3.9 Additional performance recommendations... 88
3.10 SCL programming language: Tips and Tricks 89
3.10.1 Using call templates ... 89
3.10.2 What instruction parameters are mandatory? 90
3.10.3 Drag-and-drop with entire tag names ... 90
3.10.4 Structuring with the keyword REGION (V14 or higher) 91
3.10.5 Correct use of FOR, REPEAT and WHILE loops 92
3.10.6 Using CASE instruction efficiently .. 93
3.10.7 No manipulation of loop counters for FOR loop 93
3.10.8 FOR loop backwards .. 94
3.10.9 Easy creation of instances for calls .. 94
3.10.10 Handling of time tags .. 94
3.10.11 Unnecessary IF instruction ... 96

4 Hardware-independent programming ... 97

4.1 Data types of S7-300/400 and S7-1200/1500 97
4.2 No bit memory but global data blocks .. 99
4.3 Programming of "Cycle bits"... 99

5 STEP 7 Safety in the TIA Portal .. 100

5.1 Introduction ... 100
5.2 Terms ... 101
5.3 Components of the safety program .. 102
5.4 F-runtime group .. 103
5.5 F signature ... 103
5.6 Assigning the PROFIsafe address at the F-I/O 105
5.7 Evaluation of F-I/O ... 105
5.8 Value status (S7-1200F/1500F) ... 106
5.9 Data types .. 107
5.9.1 Overview... 107
5.9.2 Implicit conversion .. 107
5.10 F-conform PLC data type ... 109
5.11 TRUE / FALSE ... 111
5.12 Optimizing the compilation and program runtime 112

Table of Contents

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 5


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.12.1 Avoiding of time-processing blocks: TP, TON, TOF 113
5.12.2 Avoiding deep call hierarchies ... 113
5.12.3 Avoiding JMP/Label structures ... 113
5.13 Data exchange between standard program and F program 114
5.14 Testing the safety program... 115
5.15 STOP mode in the event of F errors .. 116
5.16 Migration of safety programs .. 116
5.17 General recommendations for safety ... 116

6 Automatically generate visualization using the user program 117

6.1 Introduction ... 117
6.2 How automatic generation works ... 118
6.3 Controlling the HMI generator .. 119
6.3.1 Using network comments for control .. 119
6.3.2 Using SiVArc variables for control .. 120
6.4 Additional recommendations .. 121

7 The most important recommendations ... 122

8 Appendix .. 123

8.1 Service and support ... 123
8.2 Links and literature ... 124
8.3 Change documentation .. 125

1 Preface

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 6

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Preface

Objective for the development of the new SIMATIC controller generation

• An engineering framework for all automation components (controller, HMI,
drives, etc.)

• Uniform programming

• Increased performance

• Complete set of command for every language

• Fully symbolic program generation

• Data handling also without pointer

• Reusability of created blocks

Objective of the guideline

The new controller generation SIMATIC S7-1200 and S7-1500 has an up-to-date
system architecture, and together with the TIA Portal offers new and efficient
options of programming and configuration. It is no longer the resources of the
controller (e.g. data storage in the memory) that are paramount but the actual
automation solution itself.

This document gives you many recommendations and notes on optimal
programming of S7-1200/1500 controllers. Some differences in the system
architecture of the S7-300/400, as well as the thus connected new programming
options are explained in an easy to understand way. This helps you to create
standardized and optimal programming of your automation solutions.

The examples described can be universally used for the controllers S7-1200 and
S7-1500.

Core contents of this programming guideline

The following key issues on the TIA Portal are dealt with in this document:

• S7-1200/1500 innovations

– Programming languages

– Optimized blocks

– Data types and instructions

• Recommendations on general programming

– Operating system and user program

– Memory concept

– Symbolic addressing

– Libraries

• Recommendations on hardware-independent programming

• Recommendations on STEP 7 Safety in TIA Portal

• Overview of the most important recommendations

1 Preface

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 7

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Advantages and benefits

Numerous advantages result from applying these recommendations and tips:

• Powerful user program

• Clear program structures

• Intuitive and effective programming solutions

Further information

When programming SIMATIC controllers, the task of the programmer is to create
as clear and readable a user program as possible. Each user uses their own
strategy, for example, how to name tags or blocks or the way of commenting. The
different philosophies of the programmers create very different user programs that
can only be interpreted by the respective programmer.

The programming style guide offers you coordinated set of rules for consistent
programming. These specifications for example describe a uniform assignment of
tags and block names right up to clear programming in SCL.

You can use these rules and recommendations freely; they serve as a suggestion
(not a standard in programming) for consistent programming.

Note The programming style guide for S7-1200 and S7-1500 can be found at the
following link:

https://support.industry.siemens.com/cs/ww/en/view/81318674

https://support.industry.siemens.com/cs/ww/en/view/81318674

2 S7-1200/S7-1500 innovations

2.1 Introduction

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 8

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 S7-1200/S7-1500 innovations

2.1 Introduction

In general, the programming of the SIMATIC controllers from S7-300/400 to S7-
1500 has stayed the same. There are the known programming languages such as
LAD, FBD, STL, SCL or graph and blocks such as organization blocks (OBs),
function blocks (FBs), functions (FCs) or data blocks (DBs). S7-300/400 programs
created can be easily implemented on S7-1500 and existing LAD, FBD and SCL
programs can be easily implemented on S7-1200 controllers.

In addition, there are many innovations that facilitate programming for you and
enables powerful and memory-saving code.

For programs that are implemented for S7-1200/1500 controllers, we recommend
not to implement them one-to-one, but also to check new options and if possible, to
use them. The extra effort is often limited and you will receive a program code that
is, for example,

• optimal for memory and runtime for the new CPUs,

• easier to understand,

• and easier to maintain.

Note Information for the migration of S7-300/S7-400 to S7-1500 can be found in the
following entry:

https://support.industry.siemens.com/cs/ww/en/view/109478811

2.2 Terms

General terms in the TIA Portal

Some terms have change to enable easier handling with the TIA Portal.

Figure 2-1: New terms in the TIA Portal

Symbol table PLC tags

STEP 7 V5.x STEP 7 (TIA Portal)

Tag table Watch table

UDT PLC data types

https://support.industry.siemens.com/cs/ww/en/view/109478811

2 S7-1200/S7-1500 innovations

2.2 Terms

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 9

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Terms for tags and parameters

When dealing with tags, functions, and function blocks, many terms are repeatedly
used differently or even incorrectly. The following figure clarifies these terms.

Figure 2-2: Terms for tags and parameters

FC / FBGlobaler DB

1

2

3 4

Table 2-1: Terms for Tags and parameters

 Term Description

1. Tags Tags are labeled by a name/identifier and use an
address in the memory of the controller. Tags are always
defined with a certain data type (Bool, Integer, etc.):

• PLC tags

• Individual tags in data blocks

• Complete data blocks

2. Tag value Tag values are values stored in a tag (for example, 15 as
value of an integer tag).

3. Actual parameter Actual parameters are tags interconnected at the
interfaces of instructions, functions, and function blocks.

4. Formal parameters
(transfer parameter,
block parameter)

Formal parameters are the interface parameters of
instructions, functions, and function blocks (Input,
Output, InOut, and Ret_Val).

2 S7-1200/S7-1500 innovations

2.2 Terms

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 10

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note More information can be found in the following entries:

What entries are available on the internet for the migration to STEP 7 (TIA
Portal) and WinCC (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/56314851

What system requirements have to be fulfilled to migrate a STEP 7 V5.x project
in STEP 7 Professional (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/62100731

PLC migration to S7-1500 with STEP 7 (TIA Portal)
https://support.industry.siemens.com/cs/ww/en/view/67858106

How can you program efficiently and performant in STEP 7 (TIA Portal) for S7-
1200/S7-1500?
https://support.industry.siemens.com/cs/ww/en/view/67582299

Why is it not possible to mix register passing and explicit parameter transfer with
the S7-1500 in STEP 7 (TIA Portal)?
Among other topics, the migration of STL programs to S7-1500 is described in
this entry.
https://support.industry.siemens.com/cs/ww/en/view/67655405

https://support.industry.siemens.com/cs/ww/en/view/56314851
https://support.industry.siemens.com/cs/ww/en/view/62100731
https://support.industry.siemens.com/cs/ww/en/view/67858106
https://support.industry.siemens.com/cs/ww/en/view/67582299
https://support.industry.siemens.com/cs/ww/en/view/67655405

2 S7-1200/S7-1500 innovations

2.3 Programming languages

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 11

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3 Programming languages

Different programming languages are available for the programming of a user
program. Each language has its own advantages that can be used flexibly
depending on application. Thus, each block in the user program can be created in
any programming language.

Table 2-2: Programming languages

Programming language S7-1200 S7-1500

Ladder diagram (LAD) yes yes

Function block diagram (FBD) yes yes

Structured Control Language (SCL) yes yes

Graph no yes

Statement list (STL) no yes

Note More information can be found in the following entries:

SIMATIC S7-1200 / S7-1500 Comparison List for Programming Languages
Based on the International Mnemonics
https://support.industry.siemens.com/cs/ww/en/view/86630375

What should you watch out for when migrating an S7-SCL program in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/59784005

Which instructions can you not use in an SCL program in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/58002709

How do you define the constants in an S7-SCL program in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/52258437

2.4 Optimized machine code

TIA Portal and S7-1200/1500 enable an optimized runtime performance in every
programming language. All languages are compiled directly in machine code in the
same way.

Advantages

• All programming languages have the same level of performance (for the same
access types)

• No reduction of performance through additional compilation with interim step
via STL

Properties

In the following figure, the difference in the compilation of S7-programs in machine
code is displayed.

https://support.industry.siemens.com/cs/ww/en/view/86630375
https://support.industry.siemens.com/cs/ww/en/view/59784005
https://support.industry.siemens.com/cs/ww/en/view/58002709
https://support.industry.siemens.com/cs/ww/en/view/52258437

2 S7-1200/S7-1500 innovations

2.5 Block creation

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 12

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 2-3: Machine code creation with S7-300/400/WinAC and S7-1200/1500

Maschine code
S7-300/400/WinAC

SCL
LAD
FBD

STL

Maschine code
S7-1200/1500

LAD
FBD

SCL STL
(only S7-1500)

S7-300/400/WinAC S7-1200/1500

• For S7-300/400/WinAC controllers LAD and FBD programs are first compiled
in STL before machine code is created.

• For S7-1200/1500 controllers all programming languages are directly compiled
in machine code.

2.5 Block creation

All blocks such as OBs, FBs and FCs can be directly programmed in the desired
programming language. Therefore no source has to be created for SCL
programming. Only select the block and SCL as programming language. You can
then program the block directly.

Figure 2-4: Dialog "Add new Block”

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 13

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6 Optimized blocks

S7-1200/1500 controllers have an optimized data storage. In optimized blocks all
tags are automatically sorted according to their data type. The sorting ensures that
data gaps between the tags are reduced to a minimum and that the tags are stored
access-optimized for the processor.

Non-optimized blocks are only available for compatibility reasons in S7-1200/1500
controllers.

Advantages

• Access always takes place as quickly as possible since the data storage is
optimized by the system and independent of the declaration.

• No danger of inconsistencies due to faulty, absolute access, since access is
generally symbolic

• Declaration changes do not lead to access errors since, for example, HMI
access is symbolic.

• Individual tags can be specifically defined as retentive.

• No settings required in the instance data block. Everything is set in the
assigned FB (for example, retentivity).

• Storage reserves in the data block enables changes without loss of current
values (see chapter 3.2.8 Downloading without reinitialisation).

2.6.1 S7-1200: Structure of optimized blocks

Figure 2-5: Optimized blocks for S7-1200

B
y
t
e
s

Bits

0 1 2 3 4 5 6 7

W1

W2

B1

X1 X2 X3 X4

B
y
t
e
s

Bits

0 1 2 3 4 5 6 7

0 X1

1 B1

2 X2 X3

3

4
W1

5

6 X3

7

8
W2

9

OptimizedStandard

Standard block Optimized block

Properties

• No data gaps are formed since larger tags are located at the start of a block
and smaller ones at the end.

• There is only symbolic access for optimized blocks.

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 14

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6.2 S7-1500: Structure of optimized blocks

Figure 2-6: Optimized blocks for S7-1500

B
y
t
e
s

Bits

0 1 2 3 4 5 6 7

W1

W2

B1

X1

X2

X3

X4

B
y
t
e
s

Bits

0 1 2 3 4 5 6 7

0 X1

1 B1

2 X2 X3

3

4
W1

5

6 X4

7

8
W2

9

Standard block Optimized block

OptimizedStandard

Reserve

Figure 2-7: Memory mapping for optimized blocks

B

y

t

e

s

4 Byte are always read at once

0 DW DW W B W W

16 W W W B B B B X X X

32

48

64

80

96

102 DW DW DW W W

128 W B X X

144

Reserve

Reserve

1

2

Optimized

1. Structures are located separately and can therefore be copied as block.

2. Retentive data is located in a separate area and can be copied as block.
In the event of a loss of voltage this data is saved internally in the CPU.
"MRES” resets this data to the start values located in the load memory.

Properties

• No data gaps are formed since larger tags are located at the start of a block
and smaller ones at the end.

• Faster access due to processor-optimized storage (all tags are stored in a way
so that the processor of the S7-1500 can directly read or write them with only
one machine command).

• Boolean tags are stored as byte for faster access. Thus, the controller does not
have to mask the access.

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 15

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

• Optimized blocks have a storage reserve for loading in running operation (see
chapter 3.2.8 Downloading without reinitialisation).

• There is only symbolic access for optimized blocks.

2.6.3 Processor-optimized data storage for S7-1500

For reasons of compatibility to the first SIMATIC controllers, the principle of the
"Big Endian” data storage was accepted in the S7-300/400 controllers.

Based on the changed processor architecture, the new S7-1500 controller
generation always accesses 4 byte (32 bit) in "Little-Endian” sequence. Thus the
following properties result on the system side.

Figure 2-8: Data access of a S7-1500 controller

B

y

t

e

s

Bits

0 1 2 3 4 5 6 7

0 BYTE

1

2

REAL
3

4

5

6 X X

7

8
WORD

9

B

y

t

e

s

Bits

0 1 2 3 4 5 6 7

REAL

WORD

BYTE

X

X

Standard

1

0 Little-Endian

Optimized

0

1 Big-Endian

0

1

2

3 Big-Endian

3

2

1

0 Little-Endian

1

2

1

Reserve2

Standard block

max. 64kB

Optimized block

max. 16MB

C
o

p
yi

n
g

re
q

u
ir

es
 t

im
e

d
u

e
to

 r
es

o
rt

in
g!

Conversion for
processor access:

Big → Little Endian

Best possible processor
data storage:

No conversion
required.

Table 2-3: Data access of a S7-1500 controller

 Standard block Optimized block

1. In the event of an unfavorable offset,
the controller requires 2x16 bit access
to read a 4 byte value (for example,
REAL value).

In addition the bytes have to be turned.

The controller stores the tags access-
optimized. Access is with 32 bit (REAL).

Turning the bytes is not required.

2. The entire byte is read and masked per
bit access.

The complete byte is blocked for any
other access.

Each bit is assigned a byte.

The controller does not have to mask
the byte when accessing.

3. Maximum block size is 64kB. Maximum block size can be up to
16MB.

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 16

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

• In general, only use optimized blocks.

– You do not require absolute addressing and you can always address with
symbolic data (object-related). Indirect addressing is also possible with
symbolic data (see chapter 3.6.2 ARRAY data type and indirect field
accesses).

– Processing optimized blocks in the controller is considerably faster than for
standard blocks.

• Avoid the copying/assigning of data between optimized and non-optimized
blocks. The data conversion required between source and target format
requires high processing time.

Example: Setting optimized block access

By default, the optimized block access is enabled for all newly created blocks for
S7-1200/1500. Block access can be set for OBs, FBs and global DBs. For instance
DBs, the setting derives from the respective FB.

Block access is not automatically reset if a block is migrated from a S7-300/400
controller to a S7-1200/1500. You can later change the block access to "Optimized
block access”. After changing the block access, you have to recompile the
program. If you change FBs to "Optimized block access”, the assigned instance
data blocks are automatically updated.

Follow the instructions to set the optimized block access.

Table 2-4: Setting optimized block access

Step Instruction

1. Click the "Maximizes/minimizes the Overview” button in the project tree.

2. Navigate to "Program blocks”.

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 17

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

3. Here, you see all blocks in the program and whether they are optimized or not.
In this overview the status "Optimized block access” can be conveniently
changed.

Note: Instance data blocks (here "Function_block_1_DB”) inherit the status
"optimized” from the associated FB. This is why the "optimized” setting can only
be changed on the FB. After the compilation of the project, the DB takes on the
status depending on the associated FB.

Display of optimized and non-optimized blocks in the TIA Portal

In the two following figures the differences between an optimized and a non-
optimized instance DB can be seen.

For a global DB there are the same differences.

Figure 2-9: optimized data block (without offset)

Figure 2-10: non-optimized data block (with offset)

Table 2-5: Difference: Optimized and non-optimized data block

Optimized data block Non-optimized data block

Optimized data blocks are addressed
symbolically. Therefore no "offset” is
shown.

For non-optimized blocks the "offset” is
shown and can be used for addressing.

In the optimized block you can declare
each tag individually with "Retain”.

In non-optimized blocks only all or no tag
can be declared with "Retain”.

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 18

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The retentivity of tags of a global DB is directly defined in the global DB. By default,
non-retain is preset.

Define the retentivity of tags in an instance in the function block (not the instance
DB). These settings are therefore valid for all instances of this FB.

Access types for optimized and non-optimized data blocks

In the following table all access types for blocks are displayed.

Table 2-6: Access types

Access type Optimized block Non-optimized
block

Symbolic yes yes

Indexed (fields) yes yes

Slice access yes yes

AT instruction no
(Alternative: slice access)

yes

Direct absolute no
(Alternative: ARRAY with INDEX)

yes

Indirect absolute (pointer) no
(Alternative: VARIANT /

ARRAY with index)

yes

Load without reinitialization yes no

Note More information can be found in the following entries:

What types of access are available in STEP 7 (TIA Portal) to access data values
in blocks and what should you watch out for with the differences between the
types?
https://support.industry.siemens.com/cs/ww/en/view/67655611

Which properties should you watch out for in STEP 7 (TIA Portal) for the
instructions "READ_DBL" and "WRIT_DBL" when using DBs with optimized
access?
https://support.industry.siemens.com/cs/ww/en/view/51434747

2.6.4 Conversion between optimized and non-optimized tags

It is generally recommended to work with optimized tags. However, if in individual
cases, you want to keep your programming so far, there will be a mix of optimized
and non-optimized data storage in the program.

The system knows the internal storage of each tag, irrelevant whether structured
(derived from an individually defined data type) or elementary (INT, LREAL, …).

For assignments with the same type between two tags with different memory
storage, the system converts automatically. This conversion requires performance
for structured tags and should therefore be avoided, if possible.

https://support.industry.siemens.com/cs/ww/en/view/67655611
https://support.industry.siemens.com/cs/ww/en/view/51434747

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 19

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6.5 Parameter transfer between blocks with optimized and non-optimized
access

When you transfer structures to the called block as in/out parameters (InOut), they
are transferred by default as reference (see chapter 3.3.2 Call-by-reference).

However, this is not the case if one of the blocks has the property "Optimized
access" and the other block the property "Default access”. In this case, all
parameters are generally transferred as copy (see chapter 3.3.1 Call-by-value).

In this case the called block always works with the copied values. During block
processing, these values may be changed and they are copied back to the original
operand, after processing of the block call.

This may cause problems if the original operands are changed by asynchronous
processes, for example, by HMI access or interrupt OBs. If the copies are copied
back to the original operands after the block processing, the asynchronously
performed changes on the original operands are overwritten.

Note More information can be found in the following entries:

Why is data of the HMI system or the web server sometimes overwritten in the
S7-1500?
https://support.industry.siemens.com/cs/ww/en/view/109478253

Recommendation

• Always set the same access type for the two blocks that communicate with
each other.

https://support.industry.siemens.com/cs/ww/en/view/109478253

2 S7-1200/S7-1500 innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 20

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6.6 Communication with optimized data

The interface (CPU, CM) transfers the data in the way it is arranged (irrespective of
whether it is optimized or non-optimized).

Figure 2-11: CPU-CPU communication

Send CPU Receive CPU

Compatible

data transfer

(byte stream)

Receive data can be:

• optimized

• not optimized

• Tag (any type)

• Buffer (byte array)

B1 32 39 4F 6D 7A … FF0A

Send data can be:

• optimized

• not optimized

• Tag (any type)

• Buffer (byte array)

Example

• A tag with PLC data type (data record) shall be passed on to a CPU.

• In the send CPU the tag is interconnected as actual parameter with the
communication block (TSEND_C).

• In the receive CPU the receive data is assigned to a tag of the same type.

• In this case symbolic work on the received data can be directly continued.

Note Any tags or data blocks can be used as data records (derived from PLC data
types).

Note It is also possible to define the send and receive data differently:

Send data Receive data

optimized --> non-optimized

non-optimized --> optimized

The controller automatically makes sure that the data transfer and storage is
correct.

2 S7-1200/S7-1500 innovations

2.7 Block properties

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 21

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.7 Block properties

2.7.1 Block sizes

For S7-1200/1500 controllers the maximum size of blocks in the main memory was
noticeably enlarged.

Table 2-7: Block sizes

Max. size and number
(without consideration of

memory size)

S7-300/400 S7-1200 S7-1500

DB Max. size 64 kB 64 kB 64 kB
16 MB (optimized

CPU1518)

 Max. number 16.000 65.535 65.535

FC / FB Max. size 64 kB 64 kB 512 kB

 Max. number 7.999 65.535 65.535

FC / FB / DB Max. number 4.096 (CPU319)
6.000 (CPU412)

1.024 10.000 (CPU1518)

Recommendation

• Use DBs for S7-1500 controllers as data container of very large data volumes.

• You can store data volumes of > 64 kB with S7-1500 controllers in an
optimized DB (max. size 16 MB).

2.7.2 Number of organization blocks (OB)

With OBs a hierarchical structure of the user program can be created. There are
different OBs available for this.

Table 2-8: Number of organization blocks

Organization block type S7-1200 S7-1500 Benefits

Cyclic and startup OBs 100 100
Modularization of the

user program

Hardware interrupts 50 50
Separate OB for each

event possible

Delay interrupts

4 *

20
Modularization of the

user program

Cyclic interrupts 20
Modularization of the

user program

Clocked interrupts no 20
Modularization of the

user program

* As of firmware V4, 4 delay interrupts and 4 cyclic interrupts are possible.

Recommendation

• Use OBs in order to structure the user program hierarchically.

• Further recommendations for the use of OBs can be found in chapter
3.2.1 Organization blocks (OB).

2 S7-1200/S7-1500 innovations

2.7 Block properties

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 22

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.7.3 Block interface – hide block parameters (V14 or higher)

When calling the block, block parameters can be specifically displayed or hidden.
Here, you have three options that you can configure individually for each formal
parameter.

• "Show”

• "Hide”

• "Hide if no parameter is assigned"

Advantages

• Better overview for blocks with many optional parameters

Properties

• Can be used for:

– FCs, FBs

– In, Out, InOut

Example

Figure 2-12: Hide block parameters

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 23

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.8 New data types for S7-1200/1500

S7-1200/1500 controllers support new data types to make programming more
convenient. With the new 64 bit data types, considerably larger and more precise
values can be used.

Note More information can be found in the following entry:

In STEP 7 (TIA Portal), how do you convert the data types for the S7-
1200/1500?
https://support.industry.siemens.com/cs/ww/en/view/48711306

2.8.1 Elementary data types

Table 2-9: Integer data types

Type Size Value range

USint 8 bit 0 .. 255

SInt 8 bit -128 .. 127

UInt 16 bit 0 .. 65535

UDInt 32 bit 0 .. 4.3 Mio

ULInt* 64 bit 0 .. 18.4 Trio (1018)

LInt* 64 bit -9.2 Trio .. 9.2 Trio

LWord 64 bit
16#0000 0000 0000 0000 to

16# FFFF FFFF FFFF FFFF

* only for S7-1500

Table 2-10: Floating-point data types

Type Size Value range

Real 32 bit (1 bit prefix, 8 bit exponent, 23 bit mantissa),
precision 7 places after the comma

-3.40e+38 .. 3.40e+38

LReal 64 bit (1 bit prefix, 11 bit exponent, 52 bit mantissa),
precision 15 places after the comma

-1.79e+308 .. 1.79e+308

Note More information can be found in the following entries:

Why, in STEP 7 (TIA Portal), is the result of the DInt Addition in SCL not
displayed correctly?
https://support.industry.siemens.com/cs/ww/en/view/98278626

https://support.industry.siemens.com/cs/ww/en/view/48711306
https://support.industry.siemens.com/cs/ww/en/view/98278626

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 24

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.8.2 Data type Date_Time_Long

Table 2-11: Structure of DTL (Date_Time_Long)

Year Month Day Weekday Hour Minute Second Nanosecond

DTL always reads the current system time. Access to the individual values is by the
symbolic names (for example, My_Timestamp.Hour)

Advantages

• All subareas (for example, Year, Month, …) can be addressed symbolically.

Recommendation

Use the new data type DTL instead of LDT and address it symbolically (for
example My_Timestamp.Hour).

Note More information can be found in the following entries:

In STEP 7 (TIA Portal), how can you input, read out and edit the date and time
for the CPU modules of S7-300/S7-400/S7-1200/S7-1500?
https://support.industry.siemens.com/cs/ww/en/view/43566349

Which functions are available in STEP 7 V5.5 and in TIA Portal for processing
the data types DT and DTL?
https://support.industry.siemens.com/cs/ww/en/view/63900229

2.8.3 Other time data types

Table 2-12: Time data types (only S7-1500)

Type Size Value range

LTime 64 Bit

LT#-106751d23h47m16s854ms775us808ns

to

LT#+106751d23h47m16s854ms775us807ns

LTIME_OF_DAY 64 Bit

LTOD#00:00:00.000000000

to

LTOD#23:59:59.999999999

https://support.industry.siemens.com/cs/ww/en/view/43566349
https://support.industry.siemens.com/cs/ww/en/view/63900229

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 25

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.8.4 Unicode data types

With the help of the data types WCHAR and WSTRING Unicode characters can be
processed.

Table 2-13: Time data types (only S7-1500)

Type Size Value range

WCHAR 2 Byte -

WSTRING (4 + 2*n) Byte

Preset value:
0 ..254 characters

Max. Value: 0 ..16382

n = length of string

Properties

• Processing of characters in, for example, Latin, Chinese or other languages.

• Line breaks, form feed, tab, spaces

• Special characters: Dollar signs, quotes

Example

• WCHAR#‘a‘

• WSTRING#‘Hello World!‘

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 26

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.8.5 Data type VARIANT (S7-1500 and S7-1200 from FW4.1)

A parameter from the type VARIANT is a pointer that can point to tag of different
data types. In contrast to the ANY pointer, VARIANT is a pointer with type test.
This means that the target structure and source structure are checked at runtime
and have to be identical.

VARIANT, for example, is used for communication blocks (TSEND_C) as input.

Figure 2-13: Data type VARIANT as input parameters for instruction TSEND_C

VARIANT
Here the structure is checked to TCON_IP_v4

Advantages

• Integrated type test prevents faulty access.

• The code can be more easily read through the symbolic addressing of the
variant tags.

• Code is more efficiently and within a shorter time.

• Variant pointers are clearly more intuitive than ANY pointers.

• The right type of variant tags can be used directly with the help of system
functions.

• Flexible and performant transfer of different structured tags is possible.

Properties

In a comparison between ANY and variant, the properties can be seen.

Table 2-14: Comparison ANY and variant

ANY Variant

Requires 10 byte memory with defined
structure

Does not require a main memory for the
user

Initialization either via assignment of the
data area or by filling the ANY structure

Initialization by assigning the data area or
system instruction

Non-typed – type of an interconnected
structure cannot be recognized

Typed – interconnected type and for arrays
the length can also be determined

Partly typed – for arrays the length can also
be determined

VARIANT can be evaluated and also
created via system instructions

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 27

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

• Check where before you had to use the ANY pointer. In many cases a pointer
is no longer necessary (see following table).

• Use the data type VARIANT only for indirect addressing when the data types
are only determined at program runtime.

– Use the data type VARIANT as InOut formal parameter to create generic
blocks that are independent from the data type of the actual parameters
(see example in this chapter).

– Use the VARIANT data type instead of the ANY pointer. Errors are
detected early on due to the integrated type test. Due to the symbolic
addressing, the program code can be easily interpreted.

– Use the variant instruction, for example, for type identification (see
following example and chapter 2.9.2 VARIANT instructions)

• Use the index for arrays instead of addressing the array elements via ANY
(see chapter 3.6.2 ARRAY data type and indirect field accesses).

Table 2-15: Comparison ANY pointer and simplifications

What are ANY pointers used for? Simplification with S7-1200/1500

Programming functions that can process
different data types

→ Functions with variant pointer as InOut
parameter for blocks
(see following example)

Processing of arrays

• for example, reading, initializing,
copying of elements of the same
type

→ Default array functions

• Reading and writing with
#myArray[#index] (see chapter
3.6.2 ARRAY data type and indirect
field accesses)

• Copying with MOVE_BLK (see
chapter 2.9.1 MOVE instructions)

• Transferring structures and
performant processing via absolute
addressing
for example, transferring user-
defined structures via ANY pointer to
functions

→ Transferring structures as InOut
parameters

• see chapter 3.3.2 Call-by-reference

Note If values of non-structured VARIANT tags are to be copied, you can also use
VariantGet instead of MOVE_BLK_VARIANT (chapter 2.9.2 VARIANT
instructions).

2 S7-1200/S7-1500 innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 28

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example

With the data type VARIANT it is possible to identify data types in the user program
and to respond to them accordingly. The following code of the FCs "MoveVariant”
shows a possible programming.

• The InOut formal parameter "InVar” (data type VARIANT) is used to show a tag
independent from the data type.

• The data type of the actual parameter is detected with the "Type_Of”
instruction

• Depending on the data type, the tag value is copied with the
"MOVE_BLK_VARIANT” instruction to the different output formal parameters.

• If the data type of the actual parameter is not detected, the block will output an
error code.

Figure 2-14: Formal parameter of the FC "MoveVariant”

CASE TypeOf(#inOutVariant) OF // Check datatypes

 Int: // Move Integer

 #MoveVariant := MOVE_BLK_VARIANT(SRC := #inOutVariant,

 COUNT := 1,

 SRC_INDEX := 0,

 DEST_INDEX := 0,

 DEST => #outInteger);

 Real: // Move Real

 #MoveVariant := MOVE_BLK_VARIANT(SRC := #inOutVariant,

 COUNT := 1,

 SRC_INDEX := 0,

 DEST_INDEX := 0,

 DEST => #outReal);

 typeCustom: // Move outTypeCustom

 #MoveVariant := MOVE_BLK_VARIANT(SRC := #inOutVariant,

 COUNT := 1,

 SRC_INDEX := 0,

 DEST_INDEX := 0,

 DEST => #outTypeCustom);

 ELSE // Error, no sufficient datatype

 #MoveVariant := WORD_TO_INT(#NO_CORRECT_DATA_TYPE);

 // 80B4: Error-Code of MOVE_BLK_VARIANT: Data types do

 not correspond

END_CASE;

2 S7-1200/S7-1500 innovations

2.9 Instructions

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 29

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.9 Instructions

The TIA Portal supports the programmer with ready instructions (bit logic, times,
counter, comparator…).

Note Further functions can be downloaded in the following entry:

Library with general functions for (LGFP) for STEP 7 (TIA Portal) and S7-1200 /
S7-1500
https://support.industry.siemens.com/cs/ww/en/view/109479728

2.9.1 MOVE instructions

In STEP 7 (TIA Portal) the following MOVE instructions are available. The
MOVE_BLK_VARIANT instruction is new for S7-1200/1500.

Table 2-16: Move instructions

Instruction Usage Properties

MOVE Copy value • Copies the content of the parameter on
the input IN to the parameter of the output
OUT.

• The parameters on the input and output
must be of the same data type.

• Parameters can also be structured tags
(PLC data types).

• Copies complete arrays and structures.

MOVE_BLK Copy array • Copies the content of an array to another
array.

• Source and target array must be of the
same data type.

• Copies complete arrays and structures.

• Copies several array elements with
structures as well. In addition, start and
number of elements can be specified.

UMOVE_BLK Copies array
without
interruption

• Copies the content of an array
consistently without the risk of the OB
interrupting the copying process.

• Source and target array must be of the
same data type.

MOVE_BLK_VARIANT

(S7-1500 and
S7-1200 FW4.1 or
higher)

Copy array • Copies one or several structured tag(s)
(PLC data types)

• Recognizes data types at runtime

• Supplies detailed error information

• Apart from the elementary and structured
data types, PLC data types, arrays, and
array DBs are also supported.

https://support.industry.siemens.com/cs/ww/en/view/109479728

2 S7-1200/S7-1500 innovations

2.9 Instructions

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 30

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Instruction Usage Properties

Serialize

(S7-1500 and
S7-1200 FW4.1 or
higher)

converts
structured data
into a byte
array

• Several data records can be combined
into a single byte array and, for example,
be sent to other devices as a message
frame.

• Input and output parameters can be
transferred as data type Variant.

Deserialize

(S7-1500 and
S7-1200 FW4.1 or
higher)

converts one
byte array into
one or several
structure/s

• Application case I-Device:
The I device receives several data
records in the input area which are copied
to different structures.

• Several data records can be combined
into a single byte array. Deserialize
enables copying these to different
structures.

Figure 2-15: Serialize and deserialize (S7-1500 and S7-1200 FW4.1 or higher)

Array[0..7] of Byte

Byte0

Byte1

.

.

.

Byte7

Struct1

Int

Real

Uint

.

.

.

Struct2
Struct3

Serialize Deserialize

Properties

Instructions such as "Serialize", "Deserialize", "CMP" (comparator) and "MOVE:
copy value" can process very large and complex structured tags. In the process,
the CPU analyses the tag structure at runtime. Processing time depends on the
following properties of the tag structure to be processed:

• Complexity of the structure

• Number of structures without the use of PLC data types

• Array of byte can be saved in optimized blocks (V14 or higher).

Recommendation

• Declare the structures with the help of PLC data types instead of with
"STRUCT”

• Reduce the number of structures used:

– Avoid, for example, multiple declaration of very similarly made up
structures. Summarize them in one single structure.

– When many elements of the structure have the same data type, use the
data type ARRAY, if possible.

2 S7-1200/S7-1500 innovations

2.9 Instructions

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 31

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

• Generally, you need to distinguish between MOVE, MOVE_BLK and
MOVE_BLK_VARIANT

– Use the MOVE instruction to copy complete structures.

– Use the MOVE_BLK instruction to copy parts of an ARRAY of a known
data type.

– Only use the MOVE_BLK_VARIANT instruction if you wish to copy parts of
ARRAYs with data types which are only known during program run-time.

Note UMOVE_BLK: The copy process cannot be interrupted by another activity of the
operating system. Therefore, the alarm reaction times of the CPU might increase
during processing of the instruction "Copy array without interruption".

For the complete description of the MOVE instructions, please refer to the TIA
Portal Online Help.

Note More information can be found in the following entries:

How do you copy memory areas and structured data in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/42603881

2.9.2 VARIANT instructions (S7-1500 and S7-1200 FW4.1 and higher)

Table 2-17: Move instructions

Instruction Usage Properties

MOVE instructions

VariantGet Read value This instruction enables you to read
the value of a tag pointing to a
VARIANT.

VariantPut Write value This instruction enables you to write
the value of a tag pointing to a
VARIANT.

Enumeration

CountOfElements Counting elements With this instruction you poll the
number of ARRAY elements of a tag
pointing to a VARIANT.

Comparator instructions

TypeOf()
(only SCL)

Determining the data
type

Use this instruction to poll the data
type of a tag pointing to a VARIANT.

TypeOfElements()
(only SCL)

Determining the array
data type

Use this instruction to poll the data
type of the ARRAY elements of a tag
pointing to a VARIANT.

https://support.industry.siemens.com/cs/ww/en/view/42603881

2 S7-1200/S7-1500 innovations

2.9 Instructions

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 32

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Instruction Usage Properties

Comparator instructions

VARIANT_TO_DB_ANY
(only SCL)

Determining the data
block number

This instruction queries the data
block number of an instance data
block of a PLC data type, system
data type or array DB.

DB_ANY_TO_VARIANT
(only SCL)

Created from a data
block of a variant tag.

This instruction creates the variant
tag of an instance data block of a
PLC data type, system data type or
array DB.

Note For more VARIANT instructions, please refer to the online help of the TIA Portal.

Properties

Due to their complex algorithm, variant instructions require a longer processing
time then direct instructions.

Recommendation

• If possible, do not use variant instructions in loops (FOR, WHILE…) in order to
prevent an unnecessary increase of cycle time.

• Do not use a loop via the elements to copy an array, but the direct assignment
of the complete array.

2.9.3 RUNTIME

The "RUNTIME" instruction measures the runtime of the entire program, individual
blocks or command sequences. You can call this instruction in LAD, FBD, SCL and
in STL (only S7-1500).

Note More information can be found in the following entry:

With S7-1200/S7-1500, how do you measure the total cycle time of an
organization block?
https://support.industry.siemens.com/cs/ww/en/view/87668055

https://support.industry.siemens.com/cs/ww/en/view/87668055

2 S7-1200/S7-1500 innovations

2.9 Instructions

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 33

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.9.4 Comparison of tags from PLC data types (V14 or higher)

Two tags of the same PLC data type can be checked for similarities or
dissimilarities.

Figure 2-16: Comparison of tags from PLC data types in LAD

Advantages

• Symbolic programming with structured tags

• Comparison with optimum performance

• Comparison is possible in LAB, FBD, STL.

• Comparison directly possible in STL instruction.

Example

Figure 2-17: Comparison of tags from PLC data types in STL instructions

IF #motor1 = #motor2 THEN

 // Statement section IF

;

END_IF;

2 S7-1200/S7-1500 innovations

2.9 Instructions

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 34

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.9.5 Multiple assignment (V14 or higher)

Advantages

Multiple assignment enables optimum programming for several tags (e.g., for
initializations).

Example

#statFillLevel := #statTemperature := #tempTemperature := 0.0;

2 S7-1200/S7-1500 innovations

2.10 Symbolic and comments

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 35

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.10 Symbolic and comments

2.10.1 Programming editor

Advantages

You can make the code easy to understand and readable for your colleagues by
using symbolic names and comments in your program.
The complete symbolic is saved together with the program code during the
download to the controller and therefore allows fast maintenance of the plant even
when no offline project is available.

Recommendation

• Use the comments in the programs in order to improve readability. Network title
comments are visible even if networks are collapsed.

• Design the program code in a way so that colleagues can also understand the
program straight away.

In the following example you can see the extensive options for commenting the
program in the editors.

Example

In the following figure you can see the options for commenting in the LAD editor
(same functionality in FDB).

Figure 2-18: Commenting in the user program (LAD)

4

3

2

1

The following comments are possible:

1. Block comment

2. Network title comment

3. Network comment

4. Comment on instructions, blocks and functions (open, close, etc.)

2 S7-1200/S7-1500 innovations

2.10 Symbolic and comments

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 36

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

In the programming languages SCL and STL, it can be commented with // in every
row.

Example

statFillingLevel := statRadius * statRadius * PI * statHight;

// Calculating the filling level for medium tank

Note For further information, refer to the following entry:

In STEP 7 (TIA Portal), why are the display texts, titles and comments no longer
displayed after opening the project in the block editor?
https://support.industry.siemens.com/cs/ww/en/view/41995518

2.10.2 Comment lines in watch tables

Advantages

• For better structuring it is possible to create comment lines in the watch table.

Recommendation

• Always use comment lines and sub-divide your watch table.

• Please also comment on the individual tags.

Example

Figure 2-19: Watch table with comment lines

https://support.industry.siemens.com/cs/ww/en/view/41995518

2 S7-1200/S7-1500 innovations

2.11 System constants

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 37

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.11 System constants

For S7-300/400 controllers the identification of hardware and software components
is performed by logic address or diagnostic addresses.

For S7-1200/1500 the identification is by system constants. All hardware and
software components (e.g., interfaces, modules, OBs, ...) of the S7-1200/1500
controllers have their own system constants. The system constants are
automatically created during the setup of the device configuration for the central
and distributed I/O.

Advantages

• You can address via module names instead of hardware identification.

Recommendation

• Assign function-related module names in order to identify the module easily
during programming.

Example

In the following example you can see how system constants are used in the user
program.

Figure 2-20: "System constants” in the user program

1

3

2

1. System constants of a controller can be found in the "PLC tags –
Default tag table” folder.

2. The system constants are in a separate list in the "Default tag table”.

3. In this example the symbolic name "RobotArmLeft” was assigned for a DI
module.
You can also find the module under this name in the system constant table.
In the user program "RobotArmLeft” is interconnected with the "GET_DIAG”
diagnostic block.

2 S7-1200/S7-1500 innovations

2.12 User constants

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 38

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note Open the "Device configuration” to quickly find the system constant for each
device.

Note More information can be found in the following entries:

What meaning do the system constants have for the S7-1200/1500 in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/78782835

2.12 User constants

Constant values can be saved with the help of user constants. Generally, there are
local constants for OBs, FCs and FBs and global constants for the entire user
program in a controller.

Advantages

• User constants can be used for changing constant values globally or locally for
all usage locations.

• With user constants, the program can be made more readable.

Properties

• Local user constants are defined in the block interface.

• Global user constants are defined in "PLC tags”.

• The user program only enables read access to the user constants.

• For know-how protected blocks the user constants are not visible.

https://support.industry.siemens.com/cs/ww/en/view/78782835

2 S7-1200/S7-1500 innovations

2.13 Internal reference ID for controller and HMI tags

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 39

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

• Use the user constants for improved readability of the program and central
changeability of …

– error codes,

– CASE instructions,

– conversion factors,

– natural constants ...

Example

Figure 2-21: Local user constant of a block for CASE instructions

Figure 2-22: Global user constant of a controller

Note Another application case of constants is available in the following FAQ:

How can you convert the unit of a tag in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/61928891

2.13 Internal reference ID for controller and HMI tags

STEP 7, WinCC, Startdrive, Safety and others integrate into the joint data base of
the TIA Portal engineering framework. Changes of data are automatically accepted
in all the locations in the user program, independent from whether this happens in
a controller, a panel or a drive. Therefore no data inconsistencies can occur.

If you create a tag, the TIA Portal automatically creates a unique reference ID. The
reference ID cannot be viewed or programmed by you. This procedure is internal
referencing. When changing tags (address), the reference ID remains unchanged.

https://support.industry.siemens.com/cs/ww/en/view/61928891

2 S7-1200/S7-1500 innovations

2.13 Internal reference ID for controller and HMI tags

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 40

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

In the figure below the internal reference to the data is displayed schematically.

Figure 2-23: Internal reference ID for PLC and HMI

PLC1

Internal HMI

Reference ID

HMI Symbol

name

Access

mode

Connection

with PLC

009876 motor1 <symbolic

access>

PLC1_HMI1

000578 valve2 <symbolic

access>

PLC1_HMI1

PLC Symbol

name

Absolute

address

Internal PLC

reference ID

motor1 I0.0 000123

valve2 Q0.3 000138

HMI1

Note The ID is changed by ...

• renaming tag.

• changing type.

• deleting the tag.

Advantages

• You can rewire tags without changing internal relations. The communication
between controller, HMI and drive also remains unchanged.

• The length of the symbolic name does not have an influence on the
communication load between controller and HMI.

Properties

If you change the addresses of PLC tags, you only have to reload the controller
since the system also addresses the system internally with the reference IDs. It is
not necessary to reload the HMI devices (see Figure 2-24: Changing address or
adding row).

Figure 2-24: Changing address or adding row

Changing address
& PLC

Adding row
& PLC

PLC tags

DB Elements

motor1 motor1%I0.0 %I2.0

2 S7-1200/S7-1500 innovations

2.14 STOP mode in the event of errors

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 41

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.14 STOP mode in the event of errors

In comparison to S7-300/400 there are fewer criteria with the S7-1200/1500 that
lead to the "STOP” mode.

Due to the changed consistency check in the TIA Portal, the "STOP” mode for S7-
1200/1500 controllers can already be excluded in advance in most cases. The
consistency of program blocks is already checked when compiling in the
TIA Portal. This approach makes the S7-1200/1500 controllers more "fault tolerant”
to errors than their predecessors.

Advantages

There are only three fault situations that put the S7-1200/1500 controllers into the
STOP mode. This makes the programming of the error management clearer and
easier.

Properties

Table 2-18: Response to errors of S7-1200/1500

 Error S7-1200 S7-1500

1. Cycle monitoring time
exceeded once

RUN STOP
(when OB80 is not

configured)

2. Cycle monitoring time
exceeded twice

STOP STOP

3. Programming error RUN STOP
(when OB121 is not

configured)

Error OBs:

• OB80 "Time error interrupt” is called by the operating system when the
maximum cycle time of the controller is exceeded.

• OB121 "Programming error” is called by the operating system when an error
occurs during program execution.

For every error, in addition, an entry is automatically created in the diagnostic
buffer.

Note For S7-1200/1500 controllers there are other programmable error OBs
(diagnostic error, module rack failure, etc.).

More information on error responses of S7-1200/1500 can be found in the online
help of the TIA Portal under "Events and OBs”.

3 General programming

3.1 Operating system and user program

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 42

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 General programming

3.1 Operating system and user program

SIMATIC controllers consist of operating system and user program.

• The operating system organizes all functions and sequences of the controller
that are not connected with a specific control task (e.g. handling of restart,
updating of process image, calling the user program, error handling, memory
management, etc.). The operating system is an integral part of the controller.

• The user program includes all blocks that are required for the processing of
your specific automation task. The user program is programmed with program
blocks and loaded onto the controller.

Figure 3-1: Operating system and user program

Hardware

User
program

OB
Main

Operating
system

cyclic
call

FCFB

FC

FC

Global

Local

For SIMATIC controllers the user program is always executed cyclically. The
"Main” cycle OP already exists in the "Program blocks” folder after a controller was
created in STEP 7. The block is processed by the controller and recalled in an
infinite loop.

3.2 Program blocks

In STEP 7 (TIA Portal) there are all familiar block types from the previous STEP 7
versions:

• Organization blocks

• Function blocks

• Functions

• Data blocks

Experienced STEP 7 users will know their way around straight away and new
users can very easily get familiar with the programming.

Advantages

• You can give your program a good and clear structure with the different block
types.

• Due to a good and structured program you get many function units that can be
multiply reused within a project and also in other projects. These function units
then usually only differ by a different configuration (see chapter
3.2.9 Reusability of blocks).

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 43

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

• You project or your plant becomes more transparent. This is to say, error
states in a plant can be more easily detected, analyzed and removed. In other
words, the maintainability of your plant becomes easier. This is also the case
for errors in programming.

Recommendation

• Structure your automation task.

• Divide the entire function of your plant into individual areas and form sub-
function units. Divide these function units again into smaller units and
functions. Divide until you get functions that you can use several times with
different parameters.

• Specify the interfaces between the function units. Define the unique interfaces
for functionalities that are to be delivered by "external companies”.

All organization blocks, function blocks and functions can be programmed with the
following languages:

Table 3-1: Programming languages

Programming language S7-1200 S7-1500

Ladder diagram (LAD) yes yes

Function block diagram (FBD) yes yes

Structured Control Language (SCL) yes yes

Graph no yes

Statement list (STL) no yes

3.2.1 Organization blocks (OB)

Figure 3-2: "Add new block” dialog (OB)

OBs are the interface between the operating system and the user program. They
are called by the operating system and control, for example, the following
processes:

• Startup behavior of the controller

• Cyclic program processing

• Interrupt-controlled program processing

• Error handling

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 44

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Depending on the controller a number of different OB types are available.

Properties

• OBs are called by the operating system of the controller.

• Several Main OBs can be created in a program. The OBs are processed
sequentially by OB number.

Figure 3-3: Using several Main OBs

Main1

OB1

FB

Local
FC

User program

MainX

OB200

MainY

OB300

FB

Local
FC

FB

Local
FC

Recommendation

• Encapsulate the different program parts which should maybe be replaceable
from controller to controller, into several Main OBs.

• Avoid the communication between the different Main OBs. They can then be
used independent of each other. If you nevertheless exchange data between
the individual main OBs, use the global DBs (see chapter 4.2 No bit memory
but global data blocks).

• Divide all program parts that belong to each other into folders and store them
for reusability in the project or global library.

Figure 3-4: Storing program parts in order in the project library

Further information is available in chapter 3.7 Libraries.

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 45

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note More information can be found in the following entry:

Which organization blocks can be used in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/40654862

3.2.2 Functions (FC)

Figure 3-5: "Add new block” dialog (FC)

FCs are blocks without cyclic data storages. This is why the values of block
parameters cannot be saved until the next call and have to be provided with actual
parameters when called.

Properties

• FCs are blocks without cyclic data storages.

• Temporary tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset with the default value (S7-1500
and S7-1200 firmware V4 and higher). Thus, the resulting behavior is not
accidental but reproducible behavior.

• In order to permanently save the data of an FC, the functions of the global data
blocks are available.

• FCs can have several outputs.

• The function value can be directly reused in SCL in a formula.

Recommendation

• Use the functions for frequently recurring applications that are called several
times in different locations of the user program.

• Use the option to directly reuse the function value in SCL.
<Operand> := <FC name> (Parameter list);

https://support.industry.siemens.com/cs/ww/en/view/40654862

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 46

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example

In the following example a mathematical formula is programmed in a FC. The result
of the calculation is directly declared as return value and the function value can be
directly reused.

Table 3-2: Reusing function value

Step Instruction

1. Create an FC with the mathematical formula (circular segment) and define the
"return” value as the result for the formula.

2. Call the FC with the circular segment calculation in any block (SCL).

<Operand> := <FC name> (parameter list);

Note More information can be found in the following entries:

What is the maximum number of parameters you are allowed to define in STEP
7 (TIA Portal) for a function in the S7-1200/S7-1500 CPU?
https://support.industry.siemens.com/cs/ww/en/view/99412890

https://support.industry.siemens.com/cs/ww/en/view/99412890

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 47

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.3 Function blocks (FB)

Figure 3-6: "Add new block” dialog (FB)

FBs are blocks with cyclic data storage, in which values are permanently stored.
The cyclic data storage is realized in an instance DB.

Figure 3-7: Calling a function block

Call of a function block in the block
editor

Instance DB

Properties

• FBs are blocks with cyclic data storage.

• Temporary tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset with the default value (S7-1500
and S7-1200 firmware V4). Thus, the resulting behavior is not accidental but
reproducible.

• Static tags keep the value from cycle to cycle

Recommendation

• Use the function blocks in order to create subprograms and structure the user
program. A function block can also be called several times in different locations
of the user program. This makes programming of frequently recurring program
parts easier.

• If function blocks are applied multiply in the user program, use separate
instances, preferably multi-instances.

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 48

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.4 Instances

The call of a function block is called instance. The data with which the instance is
working is saved in an instance DB.

Instance DBs are always created according to the specifications in the FB interface
and can therefore not be changed in the instance DB.

Figure 3-8: Structure of the interfaces of an FB

Instance

Input
Output
InOut

Static

The instance DB consists of a permanent memory with the interfaces input, output,
InOut and static. Temporary tags are stored in a volatile memory (L stack). The L
stack is always only valid for the current processing. I.e. temporary tags have to be
initialized in each cycle.

Properties

• Instance DBs are always assigned to a FB.

• Instance DBs do not have to be created manually in the TIA Portal and are
created automatically when calling an FB.

• The structure of the instance DB is specified in the appropriate FB and can
only be changed there.

Recommendation

• Program it in a way so that the data of the instance DB can only be changed by
the appropriate FB. This is how you can guarantee that the block can be used
universally in all kinds of projects.

For more information, please refer to chapter 3.4.1 Block interfaces as data
exchange.

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 49

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.5 Multi-instances

With multi-instances called function blocks can store their data in the instance data
block of the called function block. This means, if another function block is called in
a function block, it saves its data in the instance DB of the higher-level FBs. The
functionality of the called block is thus maintained even when the calling block is
transferred.

The following figure shows an FB that uses another FB ("IEC Timer”). All data is
saved in a multi instance DB. It is thus possible to create a block with an
independent time behavior, for example, a clock generator.

Figure 3-9: Multi-instances

Multi-instance DB

FB-Statics

TOF_TIME

FB Parameters

FB

Switch-off

delay call

Advantages

• Reusability

• Multiple calls are possible

• Clearer program with fewer instance DBs

• Simple copying of programs

• Good options for structuring during programming

Properties

• Multi-instances are memory areas within instance DBs.

Recommendation

Use multi-instances in order to ...

• reduce the number of instance DBs.

• create reusable and clear user programs.

• program local functions, for example, timer, counter, edge evaluation.

Example

If you require the time and counter function, use the "IEC Timer” blocks and the
"IEC Counter” blocks instead of the absolutely addressed SIMATIC Timer. If
possible, also always use multi-instances here. Thus, the number of blocks in the
user program is kept low.

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 50

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-10: Library of the IEC Timer

Note More information can be found in the following entries:

How do you declare the timers and counters for the S7-1500 in STEP 7 (TIA
Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67585220

https://support.industry.siemens.com/cs/ww/en/view/67585220

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 51

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.6 Transferring instance as parameters (V14)

Instances of called blocks can be defined as InOut parameters.

Advantages

• It is possible to create standardized functions whose dynamic instances are
transferred.

• Only when calling the block it is specified what instance is used.

Example

Figure 3-11: Transferring instance as parameter

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 52

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.7 Global data blocks (DB)

Figure 3-12: "Add new block” dialog (DB)

Variable data is located in data blocks that are available to the entire user program.

Figure 3-13: Global DB as central data memory

DB

OB

FC

FB

Local

Advantages

• Well-structured memory area

• High access speed

Properties

• All blocks in the user program can access global DBs.

• The structure of the global DBs can be arbitrarily made up of all data types.

• Global DBs are either created via the program editor or according to a
previously created "user-defined PLC data type" (see chapter 3.6.4 STRUCT
data type and PLC data types).

• A maximum of 256 structured tags (ARRAY, STRUCT) can be defined. This
does not apply to tags that are derived from a PLC-data type.

Recommendation

• Use the global DBs when data is used in different program parts or blocks.

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 53

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note More information can be found in the following entry:

How is the declaration table for global data blocks structured in STEP 7 (TIA
Portal)?
https://support.industry.siemens.com/cs/ww/en/view/68015630

3.2.8 Downloading without reinitialisation

In order to change user programs that already run in a controller, S7-1200
(firmware V4.0) and S7-1500 controllers offer the option to expand the interfaces of
optimized function or data blocks during operation. You can load the changed
blocks without setting the controller to STOP and without influencing the actual
values of already loaded tags.

Figure 3-14: Load without reinitialization

Name

variable1

Wert

3.4

variable3

variable4

23

0

Name

variable1

variable2

Wert

3.4

451

variable3 23

variable5 0

Block

in project

Name

variable1

variable3

variable4

variable5

variable2 451variable2

Block

in controller

Block

in controller

1

3

2

Execute the following steps whilst the controller is in RUN mode.

1. Enable "Downloading without reinitialisation”

2. Insert newly defined tags in existing block

3. Load block into controller

Advantages

• Reloading of newly defined tags without interrupting the running process. The
controller stays in "RUN” mode.

Properties

• Downloading without reinitiatialization is only possible for optimized blocks.

• The newly defined tags are initialized. The existing tags keep their current
value.

• A block with reserve requires more memory space in the controller.

• The memory reserve depends on the work memory of the controller; however,
it is max. 2 MB.

• It is assumed that a memory reserve has been defined for block.

• By default, the memory reserve is set to 100 byte.

• The memory reserve is defined individually for every block.

• The blocks can be variably expanded.

https://support.industry.siemens.com/cs/ww/de/view/68015630

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 54

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

• Define a memory reserve for blocks that are to be expanded during
commissioning (e.g. test blocks). The commissioning process is not disturbed
by a download since the actual values of the existing tags remain.

Example: Stetting memory reserve on the block

The following table describes how you can set the memory reserve for the
downloading without reinitializing.

Table 3-3: Setting memory reserve

Step Instruction

1. Right-click any optimized block in the project tree and select "Properties”.

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 55

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

2.

Click "Download without reinitialization”.

3. Enter the desired memory reserve for "Memory reserve”.

4. Confirm with "OK”.

Note You can also set a default value for the size of the memory reserve for new
blocks in the TIA portal.

In the menu bar, navigate to "Options – Settings" and then to "PLC programming
– General – Download without reinitialization".

Example: Downloading without reinitialisation

The following example displays how to download without reinitialization.

Table 3-4 Load without reinitialization

Step Instruction

1. Prerequisite: a memory reserve has to be set (see above)

2. Open, e.g. an optimized global DB.

3. Click the "Activate memory reserve” button and confirm the dialog with "OK”.

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 56

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

4. Add a new tag (retentive tags are also possible).

5. Download the block to the controller.

6. Result:

• Actual values of the block remain

Note Further information can be found in the online help of the TIA Portal under
"Loading block extensions without reinitialization”.

For further information, refer to the following entry:

How is the declaration table for global data blocks structured in STEP 7-1500
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/68015630

https://support.industry.siemens.com/cs/ww/de/view/68015630

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 57

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.9 Reusability of blocks

The block concept offers you a number of options to program in a structured and
effective way.

Advantages

• Blocks can be used universally in any location of the user program.

• Blocks can be used universally in different projects.

• When every block receives an independent task, a clear and well-structured
user program is automatically created.

• There are clearly fewer sources of errors.

• Simple error diagnostic possible.

Recommendation

If you want to reuse the block, please note the following recommendations:

• Always look at blocks as encapsulated functions. I.e. each block represents a
completed partial task within the entire user program.

• Use several cyclic Main OBs to group the plant parts.

• Always execute a data exchange between the blocks via its interfaces and not
via its instances (chapter 3.4.1 Block interfaces as data exchange).

• Do not use project-specific data and avoid the following block contents:

– Access to global DBs and use of single-instance DBs

– Access to tags

– Access to global constants

• Reusable blocks have the same requirements as know-how-protected blocks
in libraries. This is why you have to check the blocks for reusability based on
the "Multiple instance capability” block property. Compile the block before the
check.

Figure 3-15: Block attributes

3 General programming

3.2 Program blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 58

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.10 Auto numbering of blocks

For internal processing, required block numbers are automatically assigned by the
system (setting in the block properties).

Figure 3-16: Auto numbering of blocks

Copy and paste

confict with same block number

System solves the conflict with

compiling the project. Block gets next

free number autmatically.

Advantages

• Conflicting block numbers, e.g. as a result of copying, automatically deletes the
TIA Portal during compilation.

Recommendation

• Leave the existing setting "Automatic" unchanged.

Figure 3-17: Setting in the block

3 General programming

3.3 Block interface types

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 59

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3 Block interface types

FBs and FCs have three different interface types: In, InOut and Out. Via these
interface types the blocks are provided with parameters. The parameters are
processed and output again in the block. InOut parameters serve for the transfer of
data to the called block as well as the return of results. There are two different
options for the parameter transfer of data.

3.3.1 Call-by-value

When calling the block, the value of the actual parameter is copied onto the formal
parameter of the block. For this, an additional memory in the called block is
provided.

Figure 3-18: Transfer of the value

„myInt“
value: 31

FC / FB

in1

value: 31

IN
Wert: '2'

Properties

• Each block displays the same behavior as the transferred parameters

• Values are copied when calling the block

3.3.2 Call-by-reference

When calling the block, a reference is transferred to the address of the actual
parameter. For this, no additional memory is required.

Figure 3-19: Referencing the actual parameter (pointer to data storage of the parameter)

FC / FB

inOut1

Reference to „myString“

„myString“
velue: 'test'

Properties

• Each block displays the same behavior as the referenced parameters.

• Actual parameters are referenced when the block is called, i.e. with the access,
the values of the actual parameter are directly read or written.

Recommendation

• Generally use the InOut interface type for structured tags (e.g. of the ARRAY,
STRUCT, STRING, type…) in order to avoid enlarging the required data
memory unnecessarily.

3 General programming

3.4 Memory concept

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 60

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3.3 Overview for transfer of parameters

The following table gives a summarized overview of how S7-1200/1500 block
parameters with elementary or structured data types are transferred.

Table 3-5: Overview for transfer of parameters

Block type / formal parameter Elementary data
type

Structured data
type

FC Input Copy Reference

Output Copy Reference

InOut Copy Reference

FB Input Copy Copy

Output Copy Copy

InOut Copy Reference

Note When optimized data with the property "non-optimized access" is transferred
when calling the block, it is generally transferred as copy. When the block
contains many structured parameters this can quickly lead to the temporary
storage area (local data stack) of the block to overflow.

This can be avoided by setting the same access type for both blocks (chapter
2.6.5 Parameter transfer between blocks with optimized and non-optimized
access).

3.4 Memory concept

For STEP 7 there is generally the difference between the global and local memory
area. The global memory area is available for each block in the user program. The
local memory area is only available within the respective block.

3.4.1 Block interfaces as data exchange

If you are encapsulating the functions and program the data exchange between the
blocks only via the interfaces, you will clearly have advantages.

Advantages

• Program can be made up modularly from ready blocks with partial tasks.

• Program is easy to expand and maintain.

• Program code is easier to read and test since there are no hidden cross
accesses.

Recommendation

• If possible, only use local tags. Thus, you can use the blocks universally and in
a modular fashion.

3 General programming

3.4 Memory concept

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 61

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

• Use the data exchange via the block interfaces (In, Out, InOut), his guarantees
the reusability of the blocks.

• Only use the instance data blocks as local memory for the respective function
block. Other blocks should not be written into instance data blocks.

Figure 3-20: Avoiding access to instance data blocks

OB

FB

Local

FC FB

Local

If only the block interfaces are used for the data exchange it can be ensured that
all blocks can be used independent from each other.

Figure 3-21: Block interfaces for data exchange

OB

FB

Local

FC

FB

Local

3.4.2 Global memory

Memories are called global when they can be accessed from any location of the
user program. There are hardware-dependent memories (for example, bit memory,
times, counters, etc.) and global DBs. For hardware-dependent memory areas
there is the danger that the program may not be portable to any controller because
the areas there may already be used. This is why you should use global DBs
instead of hardware-dependent memory areas.

Advantages

• User programs can be used universally and independent from the hardware.

• The user program can be modularly configured without having to divide bit
memory areas for different users.

• Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

3 General programming

3.4 Memory concept

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 62

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

• Do not use any bit memory and use global DBs instead.

• Avoid hardware-dependent memory, such as, for example, clock memory or
counter. Use the IEC counter and timer in connection with multi-instances
instead (chapter 3.2.5 Multi-instances). The IEC timers can be found in
"Instructions – Basic Instructions – Timer operations”.

Figure 3-22: IEC timers

3.4.3 Local memory

• Static tags

• Temporary tags

Recommendation

• Use the static tags if the values are required in the next cycle.

• Use the temporary tags as intermediate memory in the current cycle. The
access time for temporary tags is shorter than for static ones.

• If an Input/Output tags is accessed very frequently, use a temporary tag as
intermediate memory to save runtime.

Note Optimized blocks: Temporary tags are initialized in each block call with the
default value (S7-1500 / S7-1200 firmware V4 or higher).
Non-optimized blocks: Temporary tags are undefined for each call of the block.

3 General programming

3.4 Memory concept

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 63

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.4.4 Access speed of memory areas

STEP 7 offers different options of memory access. For system-related reasons
there are faster and slower accesses to different memory areas.

Figure 3-23: Different memory access

Access speed fast intermediate slow

1

Temporary tags

1

Non-retain tags

1

Non-structured
elementary data type FC

parameter

2

Accesses to checks for at
runtime require

(register, indirect and
indirect DB accesses)

3

Access to non-optimized
blocks

Indexed accesses with
runtime tindex 4

5

5

5

6

Access to optimized DBs

Retain tags

Copying between optimized
and non-optimized blocks

2

Tags [PLC data type]

1

Fastest access in the S7-1200/1500 in descending order

1. Optimized blocks: Temporary tags, parameters of an FC and FB, non-retentive
static tags, tags [PLC data type]

2. Optimized blocks whose access for compiling is known:

– Retentive FB tags

– Optimized global DBs

3. Access to non-optimized blocks

4. Indexed accesses with index that was calculated at runtime (e.g. Motor [i])

5. Accesses that require checks at runtime

– Accesses to DBs that are created at runtime or which were opened
indirectly (e.g. OPN DB[i])

– Register access or indirect memory access

6. Copying of structures between optimized and non-optimized blocks (apart from
Array of Bytes)

3 General programming

3.5 Retentivity

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 64

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.5 Retentivity

In the event of a failure of the power supply, the controller copies the retentive data
with its buffer energy from the controller’s work memory to a non-volatile memory.
After restarting the controller, the program processing is resumed with the retentive
data. Depending on the controller, the data volume for retentivity has different
sizes.

Table 3-6: Retentive memory for S7-1200/1500

Controller
Usable retentive memory for bit memory,

times, counters, DBs and technology
objects

CPU 1211C,1212C, 1214C, 1215C, 1217C 10 kByte

CPU 1511-1 PN 88 kByte

CPU 1513-1 PN 88 kByte

CPU 1515-2 PN, CPU 1516-3 PN/DP 472 kByte

CPU 1518-4 PN/DP 768 kByte

Table 3-7: Differences of S7-1200 and S7-1500

S7-1200 S7-1500

Retentivity can only be set for bit memory Retentivity can be set for bit memory, times
and counters

Advantages

• Retentive data maintains its value when the controller goes to STOP and back
to RUN or in the event of power failure and a restart of the controller.

Properties

For elementary tags of an optimized DB the retentivity can be set separately. Non-
optimized data blocks can only be defined completely retentive or non-retentive.

Retentive data can be deleted with the actions "memory reset" or "Reset to factory
settings" via:

• Operating switch on the controller (MRES)

• Display of the controller

• Online via STEP 7 (TIA Portal)

Recommendation

• Do not use the setting "Set in IDB”. Always set the retentive data in the function
block and not in the instance data block.
The "Set in IDB” setting increases the processing time of the program
sequence. Always either select "Non-retain” or "Retain” for the interfaces in the
FB.

3 General programming

3.5 Retentivity

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 65

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-24: Program editor (Functions block interfaces)

Figure 3-25: Program editor (data block)

Example: Retentive PLC tags

The setting of the retentive data is performed in the tables of the PLC tags, function
blocks and data blocks.

Figure 3-26: Setting of the retentive tags in the table of PLC tags

Retentivity can be set from
address 0 onward!

e.g. from MB0, T0 or C0

3 General programming

3.5 Retentivity

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 66

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example: Retentive counter

You can also declare instances of functions (timer, counter, etc.) retentive. As
already described in chapter 3.2.5 Multi-instances, you should always program
such functions as multi-instance.

Figure 3-27: Retentive counter as multi-instance

Note

N
o
t
e

If the retentive memory on the PLC is not sufficient, it is possible to store data in
the form of data blocks that are only located in the load memory of the PLC. The
following entry is described by taking the example of an S7-1200. This
programming also works for S7-1500.

More information can be found in the following entries:

How do you configure data blocks in STEP 7 (TIA Portal) with the "Only store in
load memory" attribute for a S7-1200?
https://support.industry.siemens.com/cs/ww/en/view/53034113

Using Recipe Functions for persistent Data with SIMATIC S7-1200 and S7-1500
https://support.industry.siemens.com/cs/ww/en/view/109479727

https://support.industry.siemens.com/cs/ww/en/view/53034113
https://support.industry.siemens.com/cs/ww/en/view/109479727

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 67

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6 Symbolic addressing

3.6.1 Symbolic instead of absolute addressing

The TIA Portal is optimized for symbolic programming. This results in many
advantages. Due to symbolic addressing, you can program without having to pay
attention to the internal data storage. The controller handles where the best
possible storage is for the data. You can therefore completely concentrate on the
solution for your application task.

Advantages

• Easier to read programs through symbolic tag names

• Automatic update of tag names at all usage locations in the user program

• Memory storage of the program data does not have to be manually managed
(absolute addressing)

• Powerful data access

• No manual optimization for performance or program size reasons required

• Auto-complete for fast symbol input

• Fewer program errors due to type safety (validity of data types is checked for
all accesses)

Recommendation

• "Don’t worry about the storage of the data”

• "Think” symbolically. Enter the "descriptive” name for each function, tag or
data, such as, for example, Pump_boiler_1, heater_room_4, etc. Thus a
created program can be simply read, without requiring many comments.

• Give all the tags used a direct symbolic name and define them afterwards with
a right-click.

Example

Table 3-8: Example for creating symbolic tags

Step Instruction

1. Open the program editor and open any block.

2. Enter a symbolic name directly at the input of an instruction.

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 68

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

3. Right-click next to the block and select "Define tag…” in the context menu.

4. Define the tag.

There is an elegant method to save time, if you want to define several tags in a
network. First of all, assign all tag names. Then define all tags at the same time
with the dialog of step 4.

Note More information can be found in the following entry:

What are the advantages of using symbolic addressing for S7-1500 in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67598995

https://support.industry.siemens.com/cs/ww/en/view/67598995

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 69

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6.2 ARRAY data type and indirect field accesses

The ARRAY data type represents a data structure which is made up of several
elements of a data type. The ARRAY data type is suitable, for example, for the
storage of recipes, material tracking in a queue, cyclic process acquisition,
protocols, etc.

Figure 3-28: ARRAY with 10 elements of the Integer (INT) data type

You can indirectly access individual elements in the ARRAY with an index (array

["index”]).

Figure 3-29: Indirect field access

KOP / FUP: SCL:

Advantages

• Easy access through ARRAY index

• No complicated pointer creation required

• Fast creation and expansion possible

• Useable in all programming languages

Properties

• Structured data type

• Data structure made of fixed number of elements of the same data type

• ARRAYs can also be created multi-dimensional

• Possible indirect access with runtime tag with dynamic index calculation at
runtime

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 70

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

• Use ARRAY for indexed accesses instead of pointer (e.g. ANY pointer). This
makes it easier to read the program since an ARRAY is more meaningful with
a symbolic name than a pointer in a memory area.

• As run tag use the DINT data type as temporary tag for highest performance.

• Use the "MOVE_BLK” instruction to copy parts of an ARRAY into another one.

• Use the "GET_ERR_ID” instruction to catch access errors within the Array.

Note More information can be found in the following entries:

How do you implement an array access with an S7-1500 with variable index?
https://support.industry.siemens.com/cs/ww/en/view/67598676

How do you address securely and indirectly in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/97552147

In STEP 7 (TIA Portal), how do you transfer S7-1500 data between two tags of
the data types "Array of Bool" and "Word"?
https://support.industry.siemens.com/cs/ww/en/view/108999241

https://support.industry.siemens.com/cs/ww/en/view/67598676
https://support.industry.siemens.com/cs/ww/en/view/97552147
https://support.industry.siemens.com/cs/ww/en/view/108999241

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 71

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6.3 Formal parameter Array [*] (V14 or higher)

With the formal parameter Array [*], arrays with variable length can be transferred
to functions and function blocks.

With the instructions "LOWER_BOUND” and "UPPER_BOUND” the array limits
can be determined.

Advantages

• Blocks that can process the flexible arrays with different lengths

• Optimum readability due to fully-symbolic programming

• No pointer programming for arrays of different lengths necessary anymore

Example

Figure 3-30:Initializing different arrays

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 72

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6.4 STRUCT data type and PLC data types

The STRUCT data type represents a data structure which is made up of elements
of different data types. The declaration of a structure is performed in the respective
block.

Figure 3-31: Structure with elements with different data types

In comparison to structures, PLC data types are defined across the controller in the
TIA Portal and can be centrally changed. All usage locations are automatically
updated.

PLC data types are declared in the "PLC data types” folder in the project navigation
before being used.

Figure 3-32: PLC data types

Advantages

• A change in a PLC data type is automatically updated in all usage locations in
the user program.

• Simple data exchange via block interfaces between several blocks

• In PLC data types STRING tags with defined length can be declared (e.g.,
String[20]). As of TIA V14 a global constant can also be used for the length
(e.g., String[LENGTH]).
If a STRING tag is declared without defined length, the tag has the maximum
length of 255 characters.

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 73

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Properties

• PLC data types always end at WORD limits (see the figures below).

• Please consider this system property when ...

– using structures in I/O areas (see chapter 3.6.5 Access to I/O areas with
PLC data types).

– using frames with PLC data types for communication.

– using parameter records with PLC data types for I/O.

– using non-optimized blocks and absolute addressing.

Figure 3-33: PLC data types always end at WORD limits

varByte0

varByte1

varByte2

typeCustom

…

1. WORD

2. WORD

Defined size

3 Bytes

Acutal size

4 Bytes

PLC data type elements

!

Figure 3-34: PLC data types on I/O areas

PLC data type I/O area

Tag of

PLC data type

3 Bytes

Defined size

3 Bytes

Acutal size

4 Bytes

Recommendation

• Use the PLC data types to summarize several associated data, such as, e.g.
frames or motor data (setpoint, speed, rotational direction, temperature, etc.)

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 74

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

• Always use PLC data types instead of structures for the multiple uses in the
user program.

• Use the PLC data types for structuring into data blocks.

• Use the PLC data types in order to specify a structure for a data block. The
PLC data type can be used for any number of DBs. You can easily and
conveniently create any number of DBs of the same structure and adjust them
centrally on the PLC data type.

Note More information can be found in the following entries:

Libraries with PLC data types (LPD) for STEP 7 (TIA Portal) and S7-1200 / S7-
1500
https://support.industry.siemens.com/cs/ww/en/view/109482396

How do you initialize structures into optimized memory areas for the S7-1500
STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/78678760

How do you create a PLC data type for an S7-1500 controller?
https://support.industry.siemens.com/cs/ww/en/view/67599090

In STEP 7 (TIA Portal), how do you apply your own data types (UDT)?
https://support.industry.siemens.com/cs/ww/en/view/67582844

Why should whole structures instead of many single components be transferred
for the S7-1500 when a block is called?
https://support.industry.siemens.com/cs/ww/en/view/67585079

https://support.industry.siemens.com/cs/ww/en/view/109482396
https://support.industry.siemens.com/cs/ww/en/view/78678760
https://support.industry.siemens.com/cs/ww/en/view/67599090
https://support.industry.siemens.com/cs/ww/en/view/67582844
https://support.industry.siemens.com/cs/ww/en/view/67585079

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 75

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6.5 Access to I/O areas with PLC data types

With S7-1500 controllers, you can create PLC data types and use them for
structured and symbolic access to inputs and outputs.

Figure 3-35: Access to I/O areas with PLC data types

1

2

3

4

PLC data type

PLC tag

FB call FB interface

7. PLC data type with all required data

8. PLC tag of the type of the created PLC data type and start address of the I/O
data area (%Ix.0 or %Qx.0, e.g., %I0.0, %Q12.0, …)

9. Transfer of the PLC tag as actual parameter to the function block

10. Output of the function block is of the type of the created PLC data type

Advantages

• High programming efficiency

• Easy multiple usability thanks to PLC data types

Recommendation

• Use PLC data types for access to I/O areas, for example, to symbolically
receive and send drive telegrams.

Note Individual elements of a PLC data type of a tag can also be directly accessed in
the user program:

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 76

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6.6 Slice access

For S7-1200/1500 controllers, you can access the memory area of tags of the Byte,
Word, DWord or LWord data type. The division of a memory area (e.g. byte or
word) into a smaller memory area (e.g. Bool) is also called slice. The figure below
displays the symbolic bit, byte and word accesses to the operands.

Figure 3-36:Symbolic bit, byte, word, DWord slice access

WORD

DWORD

LWORD

Operands in

Blocks, DBs und

I/O/M
„myWordVariable“

Bit by bit

Word by word

Dword by

DWord
D0D1

W0W1W3

X
0

X
1

X
2

X
63

„myWordVariable.%X0“

BYTE„myByteVariable“

Byte by byteB0B1B7

„myDoubleWordVariable“

Examples

Slice access:„myLongWordVariable.%D1“

„myLongWordVariable“

„my_DoubleWordVariable.%W1“

Advantages

• High programming efficiency

• No additional definition in the tag declaration required

• Easy access (e.g. control bits)

Recommendation

• Use the slice access via AT construct rather than accessing certain data areas
in operands.

Note More information can be found in the following entry:

How in STEP 7 (TIA Portal) can you access the unstructured data types bit-by-
bit, byte-by-byte or word-by-word and symbolically?
https://support.industry.siemens.com/cs/ww/en/view/57374718

https://support.industry.siemens.com/cs/ww/en/view/57374718

3 General programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 77

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6.7 SCL networks in LAD and FBD (V14 and higher)

With SCL networks you can make calculations in LAD and FBD that can only be
programmed with considerable effort in LAD and FBD instructions.

Figure 3-37: Inserting SCL network

Advantages

• Time saving through efficient programming

• Clear code, thanks to symbolic programming

Properties

• Supports all SCL instructions

• Supports comments

Recommendation

• Use the SCL networks in LAD and FBD for mathematical calculations instead
of instructions, such as ADD, SUBB etc.

3 General programming

3.7 Libraries

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 78

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7 Libraries

With the TIA Portal you can establish independent libraries from different project
elements that can be easily reused.

Advantages

• Simple storage for the data configured in the TIA Portal:

– Complete devices (controller, HMI, drive, etc.)

– Blocks, tag tables, PLC data types, watch tables, etc.

– HMI screens, HMI tags, scripts, etc.

• Cross-project exchange via libraries

• Central update function of library elements

• Versioning of library elements

• Fewer error sources when using control blocks through system-supported
consideration of dependencies

Recommendations

• Create the master copies for easy reusability of blocks, hardware
configurations, HMI screens, etc.

• Create the types for the system-supported reusability of library elements:

– Versioning of blocks

– Central update function of all usage locations

• Use the global library for the exchange with other users or as central storage
for the simultaneous use of several users.

• Configure the storage location of your global library so it can automatically be
opened when starting the TIA Portal.
Further information is available at:
https://support.industry.siemens.com/cs/ww/en/view/100451450

Note More information can be found in the following entries:

Which elements of STEP 7 (TIA Portal) and WinCC (TIA Portal) can you store in
a library as Type or as Master Copy?
https://support.industry.siemens.com/cs/ww/en/view/109476862

How can you open a global library with write access rights in STEP 7 (TIA
Portal)?
https://support.industry.siemens.com/cs/ww/en/view/37364723

https://support.industry.siemens.com/cs/ww/en/view/100451450
https://support.industry.siemens.com/cs/ww/en/view/109476862
https://support.industry.siemens.com/cs/ww/en/view/37364723

3 General programming

3.7 Libraries

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 79

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7.1 Types of libraries and library elements

Generally there are two different types of libraries:

• "Project library"

• "Global library"

The content consists of two storage types each:

• "Types"

• "Master Copies"

Figure 3-38: Libraries in the TIA Portal

1

2

3

4

(1) "Project library"

– Integrated in the project and managed with the project

– Allows the reusability within the project

(2) "Global library"

– Independent library

– Use within several projects possible

A library includes two different types of storage of library elements:

(3) "Master copies"

– Copies of configuration elements in the library (e.g. blocks, hardware, PLC
tag tables, etc.)

– Copies are not connected with the elements in the project.

– Master copies can also be made up several configuration elements.

(4) "Types"

– Types are connected with your usage locations in the project. When types
are changed, the usage locations in the project can be updated
automatically.

3 General programming

3.7 Libraries

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 80

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

– Supported types are control blocks (FCs, FBs), PLC data types, HMI
screens, HMI faceplates, HMI UDT, scripts).

– Subordinate elements are automatically typified.

– Types are versioned: Changes can be made by creating a newer version.

– There can only be one version of a used type within a controller.

3.7.2 Type concept

The type concept allows the creation of standardized automation functions that you
can use in several plants or machines. The type concept supports you with
versioning and updating functions.

You can use types from the library in the user program. This offers the following
advantages:

Advantages

• Central update of all usage locations in the project

• Unwanted modifications of usage locations of types are not possible.

• The system guarantees that types always remain consistent by hindering
unwanted delete operations.

• If a type is deleted, all usage locations in the user program are deleted.

Properties

By using types you can make the changes centrally and update them in the
complete project.

Figure 3-39: Typifying with user libraries

User libraryProject

Typ V1

Typ V2

Use V2

Use V2

Use V2

Central update to

newer version

Master copy

Update

Use

Use

Use

without

typification

with typification

• Types are always marked for better identification

3 General programming

3.7 Libraries

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 81

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7.3 Differences between the typifiable objects for CPU and HMI

There are system-related differences between the typifiable objects for controllers
and HMI:

Table 3-9: Differences of types for controller and HMI

Controller HMI

Subordinate control elements are typified. Subordinate HMI elements are not typified.

Subordinate control elements are
instanced.

Subordinate HMI elements are not
instanced.

Control elements are edited in a test
environment.

HMI images and HMI scripts are edited in a
test environment. Faceplates and HMI -
UDTs are directly edited in the library
without test environment.

Further information on the handling of libraries can be found in the following
example.

3.7.4 Versioning of a block

Example: Creating a type

The following example shows you how the basic functions of the libraries are used
with types.

Table 3-10: Creating a type

Step Instruction

1. Create a new PLC data type with "Add new data type” and create some tags.
Later on this is the subordinate type.

3 General programming

3.7 Libraries

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 82

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

2. Create a new function block with "Add new Block”. This is the higher-level type.

3. Define an output tag of the data type you have created. The PLC data type is
therefore subordinate to the function block.

4. Drag the function block via drag-and-drop into the "Types” folder in the project
library.

3 General programming

3.7 Libraries

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 83

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

5. Optionally assign: Type name, version, author and comment and confirm the
dialog with "OK”.

6. The subordinate PLC data type is automatically also stored in the library.

3 General programming

3.7 Libraries

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 84

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example: Changing a type

Table 3-11: Changing a type

Step Instruction

1. Right-click the block in the "Project library” and select "Edit type”

2. Select which controller is to be used as test environment and confirm the dialog
with "OK”.

If several controllers in the project use the selected block, a controller has to be
selected as test environment.

3 General programming

3.7 Libraries

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 85

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

3. The block opens. A new version of the block is created.

4. Add an input tag.

In this place you have the option to test the change on the block by loading the
project onto a controller. When you have finished testing the block, continue with
the following steps.

5. Click the "release the version” button.

6. A dialog box opens. Here you can store a version-related comment. Confirm the
dialog with "OK”.

If there are several usage locations of the block in different controllers of the
project, you can update them all at the same time: "Update instances in the
project”.

If older versions of the element are no longer required you can delete them by
clicking "Delete unused type versions from library”

3 General programming

3.8 Increased performance for hardware interrupts

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 86

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.8 Increased performance for hardware interrupts

The processing of the user program can be influenced by events such as hardware
interrupts. When you need a fast response of the controller to hardware events
(e.g. a rising edge of a channel of a digital input module), configure a hardware
interrupt. For each hardware interrupt a separate OB can be programmed. This OB
is called by the operating system of the controller in the event of a hardware
interrupt. The cycle of the controller is therefore interrupted and continued after
processing the hardware interrupt.

Figure 3-40: Hardware interrupt is calling OB

e.g. rising

edge E0.0

e.g. falling

edge E6.1

Hardware

interrupt

OB40

Hardware

interrupt_1

OBxxx

Event

In the following figure you can see the configuration of a "hardware interrupt” in the
hardware configuration of a digital input module.

Figure 3-41: Configuring hardware interrupt

Advantages

• Fast system response to events (rising, falling edge, etc.)

• Each event can start a separate OB.

3 General programming

3.8 Increased performance for hardware interrupts

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 87

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

• Use the hardware interrupts in order to program fast responses to hardware
events.

• If the system response is not fast enough despite programming a hardware
interrupt, you can still accelerate the response. Set as small an "Input delay” as
possible in the module. A response to an event can always only occur if the
input delay has lapsed. The input delay is used for filtering the input signal in
order to, for example, compensate faults such as contact bounce or chatter.

Figure 3-42: Setting input delay

3 General programming

3.9 Additional performance recommendations

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 88

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9 Additional performance recommendations

Here you can find some general recommendations that enable faster program
processing of the controller.

Recommendation

Note the following recommendations for programming S7-1200/1500 controllers in
order to achieve a high performance:

• LAD/FBD: Disable "evaluate ENO” for blocks. This avoids tests at runtime.

• STL: Do not use registers since address and data registers are only emulated
for compatibility reasons by S7-1500.

Note More information can be found in the following entries:

How do you disable the ENO enable output of an instruction?
https://support.industry.siemens.com/cs/ww/en/view/67797146

How can you improve the performance in STEP 7 (TIA Portal) and in the S7-
1200/S7-1500 CPUs?
https://support.industry.siemens.com/cs/ww/en/view/37571372

https://support.industry.siemens.com/cs/ww/en/view/67797146
https://support.industry.siemens.com/cs/ww/en/view/37571372

3 General programming

3.10 SCL programming language: Tips and Tricks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 89

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10 SCL programming language: Tips and Tricks

3.10.1 Using call templates

Many instructions of the programming languages offer a call template with a list of
existing formal parameters.

Example

Table 3-12: Easy expanding of the call template

Step Instruction

1. Drag an instruction from the library into the SCL program. The editor shows the
complete call template.

2. Now fill in the required parameters "CU” and "PV” and finish the entry with the
"Return” button.

3. The editor automatically reduces the call template.

4. If you want to edit the complete call later on again, proceed as follows.

Click into the call at any place and then click "CTRL+SHIFT+SPACE”. You are
now in the "Call Template” mode. The editor expands the call again. You can
navigate with the "TAB” button through the parameters.

5. Note: In the "Call Template” mode the writing is in italics.

3 General programming

3.10 SCL programming language: Tips and Tricks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 90

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.2 What instruction parameters are mandatory?

If you are expanding the call template, the color coding will show you straight away
what formal parameters of an instruction are optional and which ones are not.
Mandatory parameters are marked dark.

3.10.3 Drag-and-drop with entire tag names

In the SCL editor you can also use drag-and-drop functions. For tag names you are
additionally supported. If you want to replace one tag by another, proceed as
follows.

Table 3-13: Drag-and-drop with tags in SCL

Step Instruction

1. Drag the tag via drag-and-drop to the tag in the program that is to be replaced.
Hold the tag for more than 1 second before releasing it.

> 1 Sekunde gedrückt halten

The complete tag is replaced.

3 General programming

3.10 SCL programming language: Tips and Tricks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 91

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.4 Structuring with the keyword REGION (V14 or higher)

The SCL code can be divided in areas with the keyword REGION. These areas
can be given a name and can be collapsed and expanded.

Advantages

• Better overview

• Easy navigation even in large blocks

• Ready code fragments can be collapsed.

Properties

REGIONs can be nested.

Recommendation

Use the keyword REGION for the structuring of your SCL blocks.

Example

Figure 3-43: SCL editor

3 General programming

3.10 SCL programming language: Tips and Tricks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 92

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.5 Correct use of FOR, REPEAT and WHILE loops

There are different versions and applications for the use of loops. The following
examples show the differences.

Properties: FOR loop

The FOR loop runs through a defined number of runs. The loop variable is
assigned a start value at the beginning. Afterwards it is incremented up to the end
value in each loop run with the specified step size.

For reasons of performance, the start as well as the end value is calculated once at
the beginning. Consequently, the loop variable can no longer influence the loop
code.

Syntax

FOR statCounter := statStartCount TO statEndCount DO

 // Statement section ;

END_FOR;

With the EXIT command the loop can be interrupted at any time.

Properties: WHILE loop

The WHILE loop is ended by a termination condition. The termination condition is
checked before the start of the loop code. I.e., the loop is not executed, if the
condition is not instantly fulfilled. Each variable can be adjusted for the next run in
the loop code.

Syntax

WHILE condition DO

 // Statement section ;

END_WHILE;

Properties: REPEAT loop

The REPEAT loop is ended by a termination condition. The termination condition
is checked at the end of the loop code. This means the loop is run through at
least once. Each variable can be adjusted for the next run in the loop code.

Syntax

REPEAT

 // Statement section ;

UNTIL condition

END_REPEAT;

Recommendation

• Use FOR loops if the loop variable is clearly defined.

• Use the WHILE or REPEAT loop if a loop variable has to be adjusted during
the loop processing.

3 General programming

3.10 SCL programming language: Tips and Tricks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 93

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.6 Using CASE instruction efficiently

With the CASE instruction in SCL, it will be exactly jumped to the selected CASE
block condition. After executing the CASE block the instruction is finished. This
allows you, for example, to check frequently required value ranges more
specifically and easily.

Example

CASE #myVar OF

 5:

 #Engine(#myParam);

 10,12:

 #Transport(#myParam);

 15:

 #Lift(#myParam);

 0..20:

 #Global(#myParam);

// Global is never called for the values 5, 10, 12 or 15!

 ELSE

END_CASE;

Note CASE instructions also work with CHAR, STRING data types, as well as with
elements (see example in chapter 2.8.5 Data type VARIANT).

3.10.7 No manipulation of loop counters for FOR loop

FOR loops in SCL are pure counter loops, i.e. the number of iterations is fixed
when the loop is entered. In a FOR loop, the loop counter cannot be changed.

With the EXIT instruction a loop can be interrupted at any time.

Advantages

• The compiler can optimize the program better, since it does not know the
number of iterations.

Example

FOR #statVar := #statLower TO #statUpper DO

 #statVar := #statVar + 1; // no effect, compiler warning

END_FOR;

3 General programming

3.10 SCL programming language: Tips and Tricks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 94

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.8 FOR loop backwards

In SCL you can also increment the index of FOR loops backwards or in another
step width. For this, use the optional "BY” key word in the loop head.

Example

FOR #statVar := #statUpper TO #statLower BY -2 DO

END_FOR;

If you are defining "BY” as "-2”, as in the example, the counter is lowered by 2 in
every iteration. If you omit "BY”, the default setting for "BY” is 1

3.10.9 Easy creation of instances for calls

If you prefer to work with the keyboard, there is a simple possibility to create
instances for blocks in SCL.

Example

Table 3-14: Easy creation of instances

Step Instruction

1. Give the block a name, followed by a ".” (dot). The automatic compilation now
shows you the following.

2. On the top you can see the already existing instances. In addition, you can
directly create a new single instance or multi-instance.

Use the shortcuts "s" or "m" to go directly to the respective entries in the
automatic compilation window.

3.10.10 Handling of time tags

You can calculate the time tags in SCL just as with normal numbers i.e. you do not
need to look for additional functions, such as, e.g. T_COMBINE but you can use
simple arithmetic. This approach is called "overload of operands”. The SCL
compiler automatically uses the suitable functions. You can use a reasonable
arithmetic for the time types and can therefore program more efficiently.

Example

time difference := time stamp_1 - time stamp_2;

The following table summarizes the overloaded operators and the operations
behind it:

3 General programming

3.10 SCL programming language: Tips and Tricks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 95

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 3-15: Overloaded operands for SCL

overloaded operand Operation

ltime + time T_ADD LTime

ltime – time T_SUB LTime

ltime + lint T_ADD LTime

ltime – lint T_SUB LTime

time + time T_ADD Time

time - time T_SUB Time

time + dint T_ADD Time

time - dint T_SUB Time

ldt + ltime T_ADD LDT / LTime

ldt – ltime T_SUB LDT / LTime

ldt + time T_ADD LDT / Time

ldt – time T_SUB LDT / Time

dtl + ltime T_ADD DTL / LTime

dtl – ltime T_SUB DTL / LTime

dtl + time T_ADD DTL / Time

dtl – time T_SUB DTL / Time

ltod + ltime T_ADD LTOD / LTime

ltod – ltime T_SUB LTOD / LTime

ltod + lint T_ADD LTOD / LTime

ltod – lint T_SUB LTOD / LTime

ltod + time T_ADD LTOD / Time

ltod – time T_SUB LTOD / Time

tod + time T_ADD TOD / Time

tod – time T_SUB TOD / Time

tod + dint T_ADD TOD / Time

tod – dint T_SUB TOD / Time

dt + time T_ADD DT / Time

dt – time T_SUB DT / Time

ldt – ldt T_DIFF LDT

dtl – dtl T_DIFF DTL

dt – dt T_DIFF DT

date – date T_DIFF DATE

ltod – ltod T_DIFF LTOD

date + ltod T_COMBINE DATE / LTOD

date + tod T_COMBINE DATE / TOD

3 General programming

3.10 SCL programming language: Tips and Tricks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 96

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.11 Unnecessary IF instruction

Programmers often think in IF-THEN-ELSE instructions. This frequently leads to
unnecessary constructs in programs.

Example

IF (statOn1 = TRUE AND statOn2 = TRUE) THEN

 statMotor := TRUE;

ELSE

 statMotor := FALSE;

END_IF

Recommendation

Remember that for Boolean requests a direct assignment is often more effective.
The entire construct can be programmed with one line.

Example

statMotor := statOn1 AND statOn2;

4 Hardware-independent programming

4.1 Data types of S7-300/400 and S7-1200/1500

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 97

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Hardware-independent programming
To make sure that a block can be used on all controllers without any further
adjustments, it is important not use hardware-dependent functions and properties.

4.1 Data types of S7-300/400 and S7-1200/1500

Below is a list of all elementary data types and data groups.

Recommendation

• Only use the data types that are supported by the controllers on which the
program is to run.

Table 4-1: Elementary data types correspond to standard EN 61131-3

 Description S7-300/400 S7-1200 S7-1500

Bit data types • BOOL

• BYTE

• WORD

• DWORD

yes yes yes

• LWORD no no yes

Character type • CHAR (8 bit) yes yes yes

Numerical data
types

• INT (16 bit)

• DINT (32 bit)

• REAL (32 bit)

yes yes yes

• SINT (8 bit)

• USINT (8 bit)

• UINT (16 bit)

• UDINT (32 bit)

• LREAL (64 bit)

no yes yes

• LINT (64 bit)

• ULINT (64 bit)
no no yes

Time types • TIME

• DATE

• TIME_OF_DAY

yes yes yes

• S5TIME yes no yes

• LTIME

• L_TIME_OF_DAY
no no yes

4 Hardware-independent programming

4.1 Data types of S7-300/400 and S7-1200/1500

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 98

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 4-2 Data groups that are made up of other data types

 Description S7-300/400 S7-1200 S7-1500

Time types • DT
(DATE_AND_TIME)

yes no yes

• DTL no yes yes

• LDT
(L_DATE_AND_TIME)

no no yes

Character type • STRING yes yes yes

Feld • ARRAY yes yes yes

Structure • STRUCT yes yes yes

Table 4-3: Parameter types for formal parameters that are transferred between blocks

 Description S7-300/400 S7-1200 S7-1500

Pointer • POINTER

• ANY
yes no yes 1)

• VARIANT no yes yes

Blocks • TIMER

• COUNTER
yes yes 2) yes

• BLOCK_FB

• BLOCK_FC
yes no yes

• BLOCK_DB

• BLOCK_SDB
yes no no

• VOID yes yes yes

PLC data types • PLC DATA TYPE yes yes yes

1) For optimized access, only symbolic addressing is possible

2) For S7-1200/1500 the TIMER and COUNTER data type is represented by
IEC_TIMER and IEC_Counter.

4 Hardware-independent programming

4.2 No bit memory but global data blocks

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 99

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 No bit memory but global data blocks

Advantages

• Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized only for reasons of compatibility.

Recommendation

• Dealing with bit memory (system and clock flags also) is problematic since the
size of the flag area of each controller has is different. Do not use bit memory
for the programming but always global data blocks. This is how the program
can always be used universally.

4.3 Programming of "Cycle bits"

Recommendation

For the programming of clock memory, the hardware configuration always has to
be correct.

Use a programmed block as clock generator. Below, you can find a programming
example for a clock generator in the SCL programming language.

Example

The programmed block has the following functions. A desired frequency is preset.
The "Q” output is a Boolean value that toggles in the desired frequency. The
"countdown” output outputs the remaining time of the current state of "q”.

If the desired frequency is smaller or equal 0.0, then the output q = FALSE and
Countdown = 0.0.

Period duration: 2 seconds

FB

frequency [Real]

q [Bool]

countdown [Time]

0.5

T#0S_703MS

TRUE

Note The complete programming example can be found in the following entry:

https://support.industry.siemens.com/cs/ww/en/view/109479728

https://support.industry.siemens.com/cs/ww/en/view/109479728

5 STEP 7 Safety in the TIA Portal

5.1 Introduction

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 100

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5 STEP 7 Safety in the TIA Portal

5.1 Introduction

TIA Portal V13 SP1 or higher are supported by fail-safe S7-1200F and S7-1500F
CPUs. In these controllers, standard as well as fail-safe programming is possible in
one device. For programming the fail-safe user programs, the SIMATIC STEP 7
Safety (TIA Portal) option package is used.

Figure 5-1: Standard and safety program

Safety program

Standard user

program

S7-1500F S7-1200F

Advantages

• Uniform programming in standard and fail-safe program with an engineering
tool: TIA Portal

• Familiar programming in LAD and FBD

• Uniform diagnostic and online functions

Note Fail-safe does not mean that the program contains no errors. The programmer is
responsible for the correct programming logic.

Fail-safe means that the correct processing of the fail-safe user program in the
controller is ensured.

Note Further information on the topic of safety, such as safety requirements or the
principles of safety programs can be found in:

TIA Portal - An Overview of the Most Important Documents and Links - Safety
https://support.industry.siemens.com/cs/ww/en/view/90939626

Applications & Tools – Safety Integrated
https://support.industry.siemens.com/cs/ww/en/ps/14675/ae

STEP 7 Safety (TIA Portal) - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/14675/man

https://support.industry.siemens.com/cs/ww/en/view/90939626
https://support.industry.siemens.com/cs/ww/en/ps/14675/ae
https://support.industry.siemens.com/cs/ww/en/ps/14675/man

5 STEP 7 Safety in the TIA Portal

5.2 Terms

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 101

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.2 Terms

This document consistently uses the terms with the following meaning.

Table 5-1: Safety terms

Term Description

Standard user program The standard user program is the program part,
which is not connected with F programming.

Safety program
(F program,
failsafe user program)

The fail-safe user program is the program part
which is processed fail-safe independently of the
controller.

All fail-safe blocks and instructions are shaded
yellow at the software user interface (e. g. in the
project navigation) in order to distinguish blocks and
instructions of the standard user program.
The fail-safe parameters of F-CPUs and F-I/O are
shaded yellow in the hardware configuration.

5 STEP 7 Safety in the TIA Portal

5.3 Components of the safety program

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 102

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.3 Components of the safety program

Das safety program always consists of user-generated, system-generated F blocks
and the "Safety administration” editor.

Table 5-2 Components of the safety program

Description Screen

1. "Safety administration” editor

– Status of the safety program

– F collective signature

– Status of the safety operation

– Creating/organizing F runtime
groups

– Information on the F blocks

– Information on F-conform PLC
data types

– Defining/changing the access
protection

2. User-created F blocks

3. System-generated F runtime blocks

– Blocks contain status information
on the F runtime group.

4. System-generated F-I/O data blocks

– Blocks contain tags for evaluating
the F modules.

5. "Compiler blocks”
System-generated verification blocks

– These run in the background of
the controller and provide for fail-
safe processing of the safety
program.

– These blocks cannot be
processed by the user.

1

2

3

4

5

5 STEP 7 Safety in the TIA Portal

5.4 F-runtime group

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 103

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.4 F-runtime group

A safety program is always processed in an F runtime group with defined cycle. An
F runtime group consists of a "Fail-safe organization block” which calls a "Main
safety block”. All user-generated safety functions are called from the
"Main safety block”.

Figure 5-2 F runtime group in the "Safety administration” editor

Advantages

• Runtime groups can simply be created and configured in the "Safety
Administrator”.

• F-blocks in the runtime group are automatically created.

Properties

• A maximum of two F runtime groups can be created.

5.5 F signature

Each F component (station, I/O, blocks) has a unique F signature. Using the F
signature it can be quickly detected whether an F device configuration, F blocks or
a complete station still corresponds to the original configuration or programming.

Advantages

• Simple and quick comparison of F blocks and F device configurations

Properties

• F parameter signature (without address of F-I/O)…

– only changed by adjusting the parameters.

– remains unchanged when changing the PROFIsafe address. However, the
F collective signature of the station changes.

• F block signature is only changed when the logic in the F block changes.

• F block signature remains unchanged by changing the

– block number,

– block interface,

5 STEP 7 Safety in the TIA Portal

5.5 F signature

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 104

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

– block version.

Example

Figure 5-3 Examples of F signatures

1

2

3

1. F collective signature of the station in the "Safety administration” editor

2. F block signatures in the "Safety Administration” editor (can also be read out
from the properties of the block)

3. F parameter signature in the "Device view” at "Devices & Networks”

Note For S7-1500F controllers it is possible to read the F overall signature directly on
the installed display or in the integrated web server.

5 STEP 7 Safety in the TIA Portal

5.6 Assigning the PROFIsafe address at the F-I/O

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 105

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.6 Assigning the PROFIsafe address at the F-I/O

Each F-I/O device has a PROFIsafe address for identification and communication
with F controllers. When assigning the PROFIsafe address, two different
configurations are possible.

Table 5-3: Setting the F address

ET 200M / ET 200S
(PROFIsafe address type 1)

ET 200MP / ET 200SP
(PROFIsafe address type 2)

Assigning the PROFIsafe address directly
at the modules via DIL switch

In the device configuration of the TIA Portal
and in the DIL switch position at the
periphery, the PROFIsafe address must be
the same.

Assigning the PROFIsafe address
exclusively via TIA Portal

The configured PROFIsafe address is
loaded onto the intelligent coding module of
the module.

Advantages

• Replacing an F module is possible without reassigning the PROFIsafe address
at ET 200MP and ET 200SP. The intelligent coding module remains in the
BaseUnit during module exchange.

• Simple configuration since TIA Portal indicates a faulty assignment of the
PROFIsafe address warnings.

• The PROFIsafe addresses of all F modules can be assigned at the same time
within an ET 200SP.

Note Further information on assigning the PROFIsafe address for the F-I/O is
available at:

SIMATIC Industrial Software SIMATIC Safety – Configuring and Programming
https://support.industry.siemens.com/cs/ww/en/view/54110126

5.7 Evaluation of F-I/O

All of the current states of the respective F-I/O are saved in the F-I/O blocks. In the
safety program the states can be evaluated and processed. The following
differences exist between S7-1200F/1500F and S7-300F/400F.

Table 5-4: Tags in the F-I/O DB with S7-300F/400F and S7-1500F

Tag in F-I/O DB or value status
in PAE

F-I/O with S7-300/400F F-I/O with
S7-1200F/1500F

ACK_NEC yes yes

QBAD yes yes

PASS_OUT yes yes

QBAD_I_xx * yes no

QBAD_O_xx * yes no

Value status no yes

https://support.industry.siemens.com/cs/ww/en/view/54110126

5 STEP 7 Safety in the TIA Portal

5.8 Value status (S7-1200F/1500F)

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 106

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

* QBAD_I_xx and QBAD_O_xx show you the validity of the channel value and
correspond to the inverted value status at S7-1200F/1500F (further information is
available in the following chapter).

5.8 Value status (S7-1200F/1500F)

In addition to the diagnostic messages and the status and error display, the F
module provides information on the validity of each input and output signal - the
value status. The value status is stored in the same way as the input signal in the
process image:

The value status informs about the validity of the respective channel value.

• 1: A valid process value is output for the channel.

• 0: a substitute value is output for the channel.

Table 5-5: Differences Q_BAD (S7-300F/400F) and value status (S7-1200F/1500F)

Scenario QBAD (S7-300F/400F) Value status
(S7-1200F/1500F)

Valid values at the F-I/O (no error) FALSE TRUE

Channel error occurs TRUE FALSE

Channel error going (ACK_REQ) TRUE FALSE

Acknowledgement of the failure
(ACK_REI)

FALSE TRUE

Properties

• The value status is entered into the process image of the inputs and outputs.

• Channel value and value status of an F-I/O must only be accessed from the
same F run-time group.

Recommendation

• For improved readability assign the ending "VS”, e.g. "TagIn1VS” as the

symbolic name for the value status.

Example

Position of the value status bits in the process image using the example of an F-DI
8x24VDC HF module.

Table 5-6: Value status bits in the process image using the example of an F-DI 8x24VDC HF

Byte in
the F-
CPU

Assigned bits in the F-CPU

7 6 5 4 3 2 1 0

x + 0 DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

x +1 Value
status
for DI7

Value
status
for DI6

Value
status
for DI5

Value
status
for DI4

Value
status
for DI3

Value
status
for DI2

Value
status
for DI1

Value
status
for DI0

x = module start address

5 STEP 7 Safety in the TIA Portal

5.9 Data types

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 107

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note More information about the value status of all ET 200SP modules is available at:

Failsafe CPUs - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/13719/man

Failsafe I/O modules - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/14059/man

5.9 Data types

5.9.1 Overview

There is an unrestricted scope of data types for the safety programs of the S7-
1200/1500F.

Table 5-7 Integer data types

Type Size Value range

BOOL 1 bit 0 .. 1

INT 16 bit -32.768 .. 32.767

WORD 16 bit -32.768 .. 65.535

DINT 32 bit -2.14 .. 2.14 Mio

TIME 32 bit
T#-24d20h31m23s648ms to

T#+24d20h31m23s647ms

5.9.2 Implicit conversion

In safety-relevant applications is may be necessary to carry out mathematical
functions with tags of different data types. The function blocks necessary for this,
require a defined data format of the formal parameters. It the operand does not
comply with the expected data type, a conversion has to be carried out first.

Under the following circumstances can the S7-1200/1500 also perform the data
conversion implicitly:

• IEC check is disabled.

• The data types have the same length.

For this reason, the following data types can be converted implicitly in the safety
program:

• WORD ↔ INT

• DINT ↔ TIME

A practical application is the addition of two time values, although the function
"Add” is required as "DInt” input. The result is then also output as "Time” tag.

https://support.industry.siemens.com/cs/ww/en/ps/13719/man
https://support.industry.siemens.com/cs/ww/en/ps/14059/man

5 STEP 7 Safety in the TIA Portal

5.9 Data types

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 108

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 5-4: Addition of two time values

Enable or disable the IEC check in the properties of the respective function block or
function.

Figure 5-5: Disabling IEC check

5 STEP 7 Safety in the TIA Portal

5.10 F-conform PLC data type

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 109

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.10 F-conform PLC data type

For safety programs it is also possible to structure data optimal with PLC data
types.

Advantages

• A change in a PLC data type is automatically updated in all usage locations in
the user program.

Properties

• F-PLC data types are declared and used in the same way as PLC data types.

• As F-PLC data types, all data types which are allowed in the safety program
can be used.

• Nesting of F-PLC data types within other F-PLC data types is not supported.

• F-PLC data types can be used in the safety program as well as in the standard
user program.

5 STEP 7 Safety in the TIA Portal

5.10 F-conform PLC data type

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 110

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

• You use F-PLC data types for accessing I/O areas (as in chapter 3.6.5 Access
to I/O areas with PLC data types)

• The following rules must be observed here:

– The structure of the tags of the F-conform PLC data type must match the
channel structure of the F-I/O.

– An F-conform PLC data type for an F-I/O with 8 channels is, for example:

• 8 BOOL tags (channel value) or

• 16 BOOL tags (channel value + value status)

– Access to F-I/O is only permitted for activated channels. When configuring
a 1oo2 (2v2) evaluation, the higher channel is always deactivated.

Example

Figure 5-6: Access to I/O areas with F-PLC data types

F-I/OF-PLC data type

PLC tag

5 STEP 7 Safety in the TIA Portal

5.11 TRUE / FALSE

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 111

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.11 TRUE / FALSE

The use of "TRUE” and "FALSE” signals in the safety programs can be
differentiated in two application cases:

• as actual parameter at blocks

• as assignment to operations

Actual parameter at blocks

For S7-1200F/1500F controllers you can use the Boolean constants "FALSE” for 0
and "TRUE” for 1 as actual parameter for supplying formal parameters during block
calls in the safety program. Only the keyword "FALSE” or "TRUE” is written to the
formal parameter.

Figure 5-7: "TRUE” and "FALSE” signals as actual parameter

Assignments to operations

In order to create "TRUE” or "FALSE” signals for operations, proceed as follows:

1. Create two static tags "statTrue" and "statFalse" of the type BOOL.

2. Assign the default value "false” to the statFalse tag.

3. Assign the default value "true” to the statTrue tag.

You can use the tags as "True” and "False” read signals in the complete function
block.

Figure 5-8: "TRUE” and "FALSE” signals

5 STEP 7 Safety in the TIA Portal

5.12 Optimizing the compilation and program runtime

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 112

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.12 Optimizing the compilation and program runtime

An important part of the safety program is the protection of the user programming
by coded processing. The aim is to discover any kind of data corruption in the
safety program and therefore to prevent unsafe conditions.

This protection program is created during the compilation and therefore prolongs
the compilation time. The runtime of the F-CPU is also prolonged through the
protection program, since the F-CPU processes it additionally and compares the
results with the user program.

The protection program that is generated automatically by the system can be found
in the system block folder of your F-CPU.

Example

Figure 5-9: User and system created F blocks

User created
F-blocks

System created
F-blocks

This chapter shows you the different options for shortening the compilation and
program runtime.

Depending on the use it will not always be possible to use all suggestions. They
nevertheless provide information why certain programming methods cause shorter
compilation and program runtimes then a non-optimized program.

5 STEP 7 Safety in the TIA Portal

5.12 Optimizing the compilation and program runtime

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 113

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.12.1 Avoiding of time-processing blocks: TP, TON, TOF

Every time-processing block (TP, TON, TOF) requires additional blocks and global
data corrections in the protection code.

Recommendation

Use these blocks as little as possible.

5.12.2 Avoiding deep call hierarchies

Deep call hierarchies enlarge the code of the system-created F blocks, since a
larger scope of protective functions and test is required. When the nesting depth of
8 is exceeded, the TIA Portal will emit a warning during the compilation.

Recommendation

Structure your program in a way as to avoid unnecessary deep call hierarchies.

5.12.3 Avoiding JMP/Label structures

If a block call is jumped via JMP/LABEL this leads to an additional protection in the
F blocks on the system side. Here, a correction code has to be carried out for the
skipped block call. This costs performance and time in the compilation

Recommendation

Avoid JMP/Label structures as far as possible to reduce F-blocks on the system
side.

5 STEP 7 Safety in the TIA Portal

5.13 Data exchange between standard program and F program

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 114

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.13 Data exchange between standard program and F
program

In some cases it is necessary to exchange data between the safety program and
the standard user program. The following recommendations should urgently be
noted in order to guarantee data consistency between standard and the safety
program.

Recommendations

• No data exchange via bit memory (see chapter 4.2 No bit memory but global
data blocks)

• Concentrate the access between safety program and the standard user
program on two standard DBs.

Changes in the standard program will therefore have no influence on the safety
program. The controller also does not need to be in STOP mode to load the
standard program.

Figure 5-10: Data exchange between standard and safety program

Standard user program Safety program

FOB1

MainSafety

Main

InstMainSafety

Data buffer

DataToSafety

DataFromSafety

Standard

5 STEP 7 Safety in the TIA Portal

5.14 Testing the safety program

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 115

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.14 Testing the safety program

In addition to the always controllable data of a standard-user program you can

change the following data of a safety program in the deactivated safety mode.

• Process image of F-I/O

• F-DBs (except DB for F-runtime group communication), instance-DBs of

F-FBs

• F-I/O DBs

Properties

• Controlling F-I/O is only possible in F-CPU RUN mode.

• From a watch table you can control a maximum of 5 inputs/outputs in a safety
program.

• You can use several watch tables.

• As trigger point you need to set "permanent” or "once” for "cycle start” or "cycle
end”.

• Forcing is not possible for the F-I/O.

• If you still wish to use stop points for testing, you need to deactivate the safety
mode beforehand. This leads to the following errors:

– Error during communication with the F-I/O

– Error at fail-safe CPU-CPU communication

5 STEP 7 Safety in the TIA Portal

5.15 STOP mode in the event of F errors

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 116

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.15 STOP mode in the event of F errors

In the following cases, the STOP mode is triggered for F-CPUs:

• In the "System blocks" folder you must not add, change or delete any blocks.

• There must not be any access to instance DBs of F-FBs which are not called
in the safety program.

• The "Maximum cycle time of the F-runtime group" must not be exceeded.
Select the maximal permitted time for "Maximum cycle time der F run-time
group" which can elapse between two calls of this F runtime group (maximum
20000 ms).

• If tags are read from a DB for F runtime group communication whose runtime
group is not processed (main safety block of the F runtime group is not called).

• Editing the start values in instance DBs of F-FBs is not permitted online and
offline and can lead to STOP of the F-CPU.

• The main safety block must not contain any parameters since they cannot be
supplied.

• Outputs of F-FCs must always be initialized.

5.16 Migration of safety programs

Information on migrating safety programs is available at:

https://support.industry.siemens.com/cs/ww/en/view/109475826

5.17 General recommendations for safety

Generally, the following recommendations apply for handling STEP 7 Safety and F
modules.

• Whenever possible, always use F controllers. Thus, a later expansion of safety
functions can be realized very easily.

• Always use one password for the safety program to prevent unauthorized
changes. The password is set in the "Safety administration” editor.

https://support.industry.siemens.com/cs/ww/en/view/109475826

6 Automatically generate visualization using the user program

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 117


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6 Automatically generate visualization using
the user program

6.1 Introduction

As of TIA Portal V14, you can use the SiVArc (SIMATIC Visualization Architect)
option package to automatically generate the visualization of your plant from a
visualization library and the user program in the controller.

In this chapter you optimize your user program for use with SiVArc.

Advantages of generation with SiVArc

• Automatic generation of the visualization with process connection

• Standardization of user interfaces

• Simple and consistent adaptations to operating screens

Requirements

The basic requirement for the use of SiVArc is a high degree of standardization
of your plant. Modularizing the system into individual function groups has the
advantage that SiVArc can use these function groups to generate and interconnect
the operating screen from existing library screens. Standardization of the interfaces
contributes to efficient work and automatic generation of the visualization.

Compliance with the general recommendations of this programming guide will help
you.

Note SiVArc is an interface topic between HMI and controller. This section looks at
SiVArc from the control side.

The following links will give you an insight into the functionality of SiVArc:

Application example "SiVArc Getting Started"
https://support.industry.siemens.com/cs/ww/en/view/109740350

Manual SiVArc
https://support.industry.siemens.com/cs/ww/en/view/109755214

SITRAIN course: SIMATIC Visualization Architect, automatic HMI generating
https://support.industry.siemens.com/cs/ww/en/view/109758628

https://support.industry.siemens.com/cs/ww/en/view/109740350
https://support.industry.siemens.com/cs/ww/en/view/109755214
https://support.industry.siemens.com/cs/ww/en/view/109758628

6 Automatically generate visualization using the user program

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 118


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6.2 How automatic generation works

Standardized blocks, e.g. for engine control, are called up in your user program.
Using so-called SiVArc rules, you link the called blocks with visualization elements
(text fields, IO fields, image blocks, etc.).

Figure 6-1: Example call hierarchy in the control system

MachineCall

conveyor Tank

instTank

instTank

instAxis

InstConveyor

InstAxis

Actors

Module 1 Module 2

Axis

InstConveyor

InstAxis

HMIPLC

instTank

Tank 1

SiVArc uses the rules to generate the specified visualization element on a copy of
an image template for each call of the specified block.

Figure 6-2: SiVArc rule

Note You also have the option of restricting or blocking the execution of the rule in the
controller.

6 Automatically generate visualization using the user program

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 119


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6.3 Controlling the HMI generator

You have the following options for controlling the HMI generator:

• Disable SiVArc generation for specific calls

• Sort SiVArc generation by function or plant location

• Add further properties to SiVArc generation

In SiVArc rules, you can use the following information from the controller, among
other things:

• Network comments

• SiVArc variable

This gives you the option of providing additional information for SiVArc in the
controller, which you can use as a condition in the SiVArc rules.

6.3.1 Using network comments for control

In the network comments, you can add information on controlling the generator that
the SiVArc rules search for during generation:

Figure 6-3: Network commentary with SiVArc extension

In the rule editor, use the "Contains" function in the "Condition" column and search
for the information, e.g. "Contains(Block.NetworkComment, "String")".

Figure 6-4: Use Network Comment in Rule

With this function you have a free design framework to restrict the execution of
rules or to execute a rule only for some networks.

Recommendation

Clearly mark the information for SiVArc generation in the network comments, e.g.
"SiVArc: Generate True".

6 Automatically generate visualization using the user program

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 120


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6.3.2 Using SiVArc variables for control

You can define special SiVArc variables for each network in the device and use
these variables in the SiVArc rules.

To create SiVArc tags, proceed as follows:

4. Open the block.

5. Switch to the "Plug-Ins" tab in the Inspector window.

6. For each network, enter the name of the variable in the Name column and a
value as a string in the "Value" column.

Figure 6-5: Creating SiVArc Variables

In the rule editor, you can query the SiVArc variables with the expression "variable
name = "value"" and thereby influence the exercise of the rule.

In the rule editor, enter the SiVArc variable in the "Condition" column, e.g.
"Location = "Bottling West"".

In this example, the rule is only executed if the SiVArc variable "Location" has been
set to the value "Bottling West" in the network to be generated.

Figure 6-6: Use SiVArc variable in rule

Recommendation

Use common variable names to control the generator to simplify rule creation.
The following table shows an example of SiVArc variables:

Table 8: Example for SiVArc variables

Name Value Meaning

Generate true, false SiVArc generates elements for this
network.

Location Bottling West,
Mixing etc.

You can automatically assign elements
to an HMI image using this function.

6 Automatically generate visualization using the user program

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 121


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note You must define the effects listed in the "Meaning" column yourself using the
conditions in the rule editor. The SiVArc variables themselves have no influence
on the generator.

6.4 Additional recommendations

Use only characters supported by WinCC

Only use characters that are supported by WinCC for the designation of variables.

When generating the images, SiVArc accesses the identifiers of data blocks,
variables or network comments. SiVArc removes all characters that are not
supported by WinCC.
This leads to inconsistencies in the project.

Characters not supported:

• %,@, ?, ", /, \, <, >, ., :

Calling the blocks with programming language FBD

So that you can control the generator via network comments or SiVArc variables,
call the blocks from which visualization elements are to be generated in the
programming language FBD.

Note This recommendation applies up to and including TIA Portal V15.

As of TIA Portal V15.1, SCL modules can also be used.

7 The most important recommendations

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 122


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7 The most important recommendations

• Use optimized blocks

– Chapter 2.6 Optimized blocks

• Use data type VARIANT instead of ANY

– Chapter 2.8.5 Data type VARIANT

• Structuring the program clearly and well

– Chapter 3.2 Program blocks

• Inserting instructions as multi-instance (TON, TOF ..)

– Chapter 3.2.5 Multi-instances

• Reusable programming of blocks

– Chapter 3.2.9 Reusability of blocks

• Symbolic programming

– Chapter 3.6 Symbolic addressing

• When handling data, work with ARRAY

– Chapter 3.6.2 ARRAY data type and indirect field accesses

• Creating PLC data types

– Chapter 3.6.5 Access to I/O areas with PLC data types

• Using libraries for storing program elements

– Chapter 3.7 Libraries

• No bit memory but global data blocks

– Chapter 4.2 No bit memory but global data blocks

8 Appendix

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 123


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

8 Appendix

8.1 Service and support

Industry Online Support

Do you have any questions or need assistance?

Siemens Industry Online Support offers round the clock access to our entire
service and support know-how and portfolio.

The Industry Online Support is the central address for information about our
products, solutions and services.

Product information, manuals, downloads, FAQs, application examples and videos
– all information is accessible with just a few mouse clicks:
https://support.industry.siemens.com

Technical Support

The Technical Support of Siemens Industry provides you fast and competent
support regarding all technical queries with numerous tailor-made offers
– ranging from basic support to individual support contracts. Please send queries
to Technical Support via Web form:
www.siemens.com/industry/supportrequest

SITRAIN – Training for Industry

We support you with our globally available training courses for industry with
practical experience, innovative learning methods and a concept that’s tailored to
the customer’s specific needs.

For more information on our offered trainings and courses, as well as their
locations and dates, refer to our web page:
www.siemens.com/sitrain

Service offer

Our range of services includes the following:

• Plant data services

• Spare parts services

• Repair services

• On-site and maintenance services

• Retrofitting and modernization services

• Service programs and contracts

You can find detailed information on our range of services in the service catalog
web page:
https://support.industry.siemens.com/cs/sc

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry
Online Support" app. The app is available for Apple iOS, Android and Windows
Phone:
https://support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/
http://www.siemens.com/industry/supportrequest
http://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/sc
https://support.industry.siemens.com/cs/ww/en/sc/2067

8 Appendix

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 124


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

8.2 Links and literature

Table 8-1: Links and literature

 Topic

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Download page of the entry

https://support.industry.siemens.com/cs/ww/en/view/81318674

\3\ Programming Styleguide for S7-1200 and S7-1500

https://support.industry.siemens.com/cs/ww/en/view/81318674

\4\ Library with general functions for (LGF) for STEP 7 (TIA Portal) and S7-1200 /
S7-1500

https://support.industry.siemens.com/cs/ww/en/view/109479728

\5\ Libraries with PLC data types (LPD) for STEP 7 (TIA Portal) and S7-1200 /
S7-1500

https://support.industry.siemens.com/cs/ww/en/view/109482396

\6\ TIA Portal - An Overview of the Most Important Documents and Links

https://support.industry.siemens.com/cs/ww/en/view/65601780

\7\ STEP 7 (TIA Portal) manuals

https://support.industry.siemens.com/cs/ww/en/ps/14673/man

\8\ S7-1200 (F) Manuals

https://support.industry.siemens.com/cs/ww/en/ps/13683/man

\9\ S7-1500 (F) Manuals

https://support.industry.siemens.com/cs/ww/en/ps/13716/man

\10\ ET 200SP CPU manuals

https://support.industry.siemens.com/cs/ww/en/ps/13888/man

\11\ S7-1200 Getting Started

https://support.industry.siemens.com/cs/ww/en/view/39644875

\12\ S7-1500 Getting Started

https://support.industry.siemens.com/cs/ww/en/view/78027451

\13\ SIMATIC S7-1200 / S7-1500 Comparison List for Programming Languages Based
on the International Mnemonics

https://support.industry.siemens.com/cs/ww/en/view/86630375

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/109479728
https://support.industry.siemens.com/cs/ww/en/view/109482396
https://support.industry.siemens.com/cs/ww/en/view/65601780
https://support.industry.siemens.com/cs/ww/en/ps/14673/man
https://support.industry.siemens.com/cs/ww/en/ps/13683/man
https://support.industry.siemens.com/cs/ww/en/ps/13716/man
https://support.industry.siemens.com/cs/ww/en/ps/13888/man
https://support.industry.siemens.com/cs/ww/en/view/39644875
https://support.industry.siemens.com/cs/ww/en/view/78027451
https://support.industry.siemens.com/cs/ww/en/view/86630375

8 Appendix

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 125


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

8.3 Change documentation

Table 8-2: Change documentation

Version Date Modifications

V1.0 09/2013 First version

V1.1 10/2013 Corrections in the following chapters:

2.6.3 Processor-optimized data storage for S7-1500

2.12 User constants

3.2.2 Functions (FC)

3.2.3 Function blocks (FB)

3.4.3 Local memory

V1.2 03/2014 New chapters:

2.6.4 Conversion between optimized and non-optimized tags

2.6.6 Communication with optimized data

2.9.1 MOVE instructions

2.9.2 VARIANT instructions

3.6.5 Access to I/O areas with PLC data types

Corrections in the following chapters:

2.2 Terms

2.3 Programming languages

2.6 Optimized blocks

2.10 Symbolic and comments

3.2 Program blocks

3.5 Retentivity

4.3 Programming of "Cycle bits"

Various corrections in different chapters

V1.3 09/2014 New chapters:

2.8.4 Unicode data types

2.10.2 Comment lines in watch tables

2.12 User constants

3.2.10 Auto numbering of blocks

5 STEP 7 Safety in the TIA Portal

Corrections in the following chapters:

2.7 Block properties

2.8 New data types for S7-1200/1500

2.9 Instructions

2.10 Symbolic and comments

3.6.4 STRUCT data type and PLC data types

3.7 Libraries

Various corrections in different chapters

8 Appendix

Programming Guideline for S7-1200/1500
Entry ID: 81318674, V1.6, 12/2018 126


 S

ie
m

e
n

s
 A

G
 2

0
1

8
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Version Date Modifications

V1.4 11/2015 New chapters:

2.6.5 Parameter transfer between blocks with optimized and
non-optimized access

3.3.3 Overview for transfer of parameters

3.10.5 Correct use of FOR, REPEAT and WHILE loops

5.12 Optimizing the compilation and program runtime

V1.5 03/2017 New chapter:

2.7.3 Block interface – hide block parameters (V14 or higher)

2.9.4 Comparison of tags from PLC data types (V14 or higher)

2.9.5 Multiple assignment (V14 or higher)

3.2.6 Transferring instance as parameters (V14)

3.6.3 Formal parameter Array [*] (V14 or higher)

3.6.7 SCL networks in LAD and FBD (V14 and higher)

3.10.4 Structuring with the keyword REGION (V14 or higher)

3.10.11 Unnecessary IF instruction

Several corrections in different chapter

V1.6 12/2018 New chapter:

6 Automatically generate visualization using the user program

Update of title page and legal information

	Programming Guideline for S7-1200/1500
	Legal information
	1 Preface
	2 S7-1200/S7-1500 innovations
	2.1 Introduction
	2.2 Terms
	2.3 Programming languages
	2.4 Optimized machine code
	2.5 Block creation
	2.6 Optimized blocks
	2.6.1 S7-1200: Structure of optimized blocks
	2.6.2 S7-1500: Structure of optimized blocks
	2.6.3 Processor-optimized data storage for S7-1500
	2.6.4 Conversion between optimized and non-optimized tags
	2.6.5 Parameter transfer between blocks with optimized and non-optimized access
	2.6.6 Communication with optimized data

	2.7 Block properties
	2.7.1 Block sizes
	2.7.2 Number of organization blocks (OB)
	2.7.3 Block interface – hide block parameters (V14 or higher)

	2.8 New data types for S7-1200/1500
	2.8.1 Elementary data types
	2.8.2 Data type Date_Time_Long
	2.8.3 Other time data types
	2.8.4 Unicode data types
	2.8.5 Data type VARIANT (S7-1500 and S7-1200 from FW4.1)

	2.9 Instructions
	2.9.1 MOVE instructions
	2.9.2 VARIANT instructions (S7-1500 and S7-1200 FW4.1 and higher)
	2.9.3 RUNTIME
	2.9.4 Comparison of tags from PLC data types (V14 or higher)
	2.9.5 Multiple assignment (V14 or higher)

	2.10 Symbolic and comments
	2.10.1 Programming editor
	2.10.2 Comment lines in watch tables

	2.11 System constants
	2.12 User constants
	2.13 Internal reference ID for controller and HMI tags
	2.14 STOP mode in the event of errors

	3 General programming
	3.1 Operating system and user program
	3.2 Program blocks
	3.2.1 Organization blocks (OB)
	3.2.2 Functions (FC)
	3.2.3 Function blocks (FB)
	3.2.4 Instances
	3.2.5 Multi-instances
	3.2.6 Transferring instance as parameters (V14)
	3.2.7 Global data blocks (DB)
	3.2.8 Downloading without reinitialisation
	3.2.9 Reusability of blocks
	3.2.10 Auto numbering of blocks

	3.3 Block interface types
	3.3.1 Call-by-value
	3.3.2 Call-by-reference
	3.3.3 Overview for transfer of parameters

	3.4 Memory concept
	3.4.1 Block interfaces as data exchange
	3.4.2 Global memory
	3.4.3 Local memory
	3.4.4 Access speed of memory areas

	3.5 Retentivity
	3.6 Symbolic addressing
	3.6.1 Symbolic instead of absolute addressing
	3.6.2 ARRAY data type and indirect field accesses
	3.6.3 Formal parameter Array [*] (V14 or higher)
	3.6.4 STRUCT data type and PLC data types
	3.6.5 Access to I/O areas with PLC data types
	3.6.6 Slice access
	3.6.7 SCL networks in LAD and FBD (V14 and higher)

	3.7 Libraries
	3.7.1 Types of libraries and library elements
	3.7.2 Type concept
	3.7.3 Differences between the typifiable objects for CPU and HMI
	3.7.4 Versioning of a block

	3.8 Increased performance for hardware interrupts
	3.9 Additional performance recommendations
	3.10 SCL programming language: Tips and Tricks
	3.10.1 Using call templates
	3.10.2 What instruction parameters are mandatory?
	3.10.3 Drag-and-drop with entire tag names
	3.10.4 Structuring with the keyword REGION (V14 or higher)
	3.10.5 Correct use of FOR, REPEAT and WHILE loops
	3.10.6 Using CASE instruction efficiently
	3.10.7 No manipulation of loop counters for FOR loop
	3.10.8 FOR loop backwards
	3.10.9 Easy creation of instances for calls
	3.10.10 Handling of time tags
	3.10.11 Unnecessary IF instruction

	4 Hardware-independent programming
	4.1 Data types of S7-300/400 and S7-1200/1500
	4.2 No bit memory but global data blocks
	4.3 Programming of "Cycle bits"

	5 STEP 7 Safety in the TIA Portal
	5.1 Introduction
	5.2 Terms
	5.3 Components of the safety program
	5.4 F-runtime group
	5.5 F signature
	5.6 Assigning the PROFIsafe address at the F-I/O
	5.7 Evaluation of F-I/O
	5.8 Value status (S7-1200F/1500F)
	5.9 Data types
	5.9.1 Overview
	5.9.2 Implicit conversion

	5.10 F-conform PLC data type
	5.11 TRUE / FALSE
	5.12 Optimizing the compilation and program runtime
	5.12.1 Avoiding of time-processing blocks: TP, TON, TOF
	5.12.2 Avoiding deep call hierarchies
	5.12.3 Avoiding JMP/Label structures

	5.13 Data exchange between standard program and F program
	5.14 Testing the safety program
	5.15 STOP mode in the event of F errors
	5.16 Migration of safety programs
	5.17 General recommendations for safety

	6 Automatically generate visualization using the user program
	6.1 Introduction
	6.2 How automatic generation works
	6.3 Controlling the HMI generator
	6.3.1 Using network comments for control
	6.3.2 Using SiVArc variables for control

	6.4 Additional recommendations

	7 The most important recommendations
	8 Appendix
	8.1 Service and support
	8.2 Links and literature
	8.3 Change documentation

